期刊文献+

卷簧式柔性取样器的取样头-岩石接触原位辨识(英文) 被引量:1

In-Situ Sampling Head-Rock Contact Identification for a Coiling-Type Sampler
下载PDF
导出
摘要 取样头和岩石接触问题与月壤取样的成功与否直接相关,基于小型卷簧式月壤取样器的柔性取样臂结构,提出了振动取样法:在取样过程中采集振动信号进行数字信号处理与分析,达到对取样头-岩石接触的辨识。首先对振动信号进行采集、消除趋势项,然后利用小波多分辨分析去噪,采用现代功率谱中基于AR模型的Burg法对振动信号进行特征提取,最后采用二分类支持向量机对取样头是否接触到岩石进行识别。实验结果证明,卷簧式取样器的振动信号分析能够对取样头-岩石接触问题进行较好的辨识。 It will lead to failure of planet soil sampling if the sampling head is in contact with a big-size rock, So identifying this situation is significant in the process of planet sampling. In this paper, a vibration sampling method is proposed to solve this problem. The vibration signals are acquired and analyzed in the process of sampling experiments, in order to achieve the sampling head-rock contact (SHRC) identification by taking advantage of the special structure of the mini coiling-type sampler, which takes a flexible coiling spring as its sampling arm. First of all, the vibration waves are generated by a vibration motor and the vibration signals are acquired by an acceleration sensor. Then, the multi-resolution wavelet is used to filter the vibration signals. The power spectrum estimation method Burg is introduced to extract the SHRC- related features of vibration signals. At last, the status of whether the sampling head touching the rock is identified by the C- SVM (Clustering Support Vector Machine). Experimental results show that the SHRC identification problem can be solved successfully by the analysis of the vibration signals.
出处 《宇航学报》 EI CAS CSCD 北大核心 2012年第10期1536-1543,共8页 Journal of Astronautics
关键词 卷簧式月壤取样器 振动控制 小波多分辨分析 功率谱 支持向量机 Coiling-type sampler Vibration control Muhi-resolution wavelet Power spectrum estimation SVM
  • 相关文献

参考文献2

二级参考文献27

  • 1杨艳静,向树红.模拟月壤力学性质的试验和仿真研究[J].航天器环境工程,2009,26(z1):1-4. 被引量:8
  • 2欧阳自远.月球探测的进展与中国的月球探测[J].地质科技情报,2004,23(4):1-5. 被引量:34
  • 3Backes P,Khatib O,Diaz-Calderon A,et al.Concept for coring from a low-mass rover[C].Aerospace Conference 2006 IEEE.
  • 4Bar-Cohen Y,Sherrit S,Bao X,et al.Ultrasonic/sonic sampler and sensor platform for in-situ planetary exploration[C].Proceedings of the 2003 IEEE.International Conference on MEMS,NANO and Smart Systems,2003:22-31.
  • 5Kubota T,Nakatani I,Watanahe K,et al.Study on mole-typed deep driller robot for subsudace exploration[C].Proceedings of the 2005 IEEE.International Conference on Robotics and Automation.Barcelona,Spain,April 2005:1297-1302.
  • 6Potthast C,Twiefel J,Wallaschek J.Modelling approaches for an ultrasonic percussion drill[J].Journal of Sound and Vibration,2007,308(3-5):405-417.
  • 7Hill J L,Shenhar J,Lombardo M.Tethered,Down-hole-motor drilling system-A benefit to MARS exploration[J].Advances in Space Research,2003,31(11):2421-2426.
  • 8Gan Y,Ellery A,Jaddou M,et al.Deployable wood wasp drill for planetary subsurface sampling[C].Aerospace Conference 2006IEEE.
  • 9DING Xi-lun,CRISTINA P,ALBERTO R.Novel robot for safety protection identification & detect[C].Proceedings of the 2007 IEEE.International Workshop on Safety,Security and Rescue Robotics.Rome,Italy,September 2007.
  • 10丁希仑,尹忠旺,李可佳.月球土壤采样器.中国实用新型专利,200720172857.7[P].2008-4-25.

共引文献26

同被引文献15

  • 1Stakheev Y I, Ivanov A V, Vulfson E K. Comparative characteristics of the lunar-soil particle-size distribution at the landing sites of the automatic lunar stations Luna 16 and Luna 20- J ]. Cosmic Research (English translation of Kosmicheskie Issledovaniya), 1976, 14 (3) : 381 -386.
  • 2Trebi O A, Baumgartner E T, Leger P C, et al. Robotic arm in- situ operations for the Mars Exploration Rovers surface mission [ C]. 2005 IEEE International Conference on Systems, Man and Cybernetics, Waikoloa, USA, Oct. 10 - 12, 2005.
  • 3Bucek M, Agui J H, Zeng X, et al. Experimental measurements of excavation forces in lunar soil test beds [ C]. The llth Aerospace Division International Conference on Engineering, Science, Construction, and Operations in Challenging Environments, Long Beach, USA, Mar. 3 -5, 2008.
  • 4Hill J L, Shenhar J, Lombardo M. Tethered, down-hole-motor drilling system a benefit to mars exploration [ J ]. Advanced Space Research, 2003, 31 ( 11 ) : 2321 -2326.
  • 5Erickson J, Adler M, Crisp J, et al. Mars exploration rover surface operations [ C ]. The 53rd International Astronautical Congress, Houston, USA, Oct. 10 - 12, 2002.
  • 6Takashi K, Ichiro N. Study on mole-typed deep driller robot for subsurface exploration [ C ]. The International Conference on Robotics and Automation, Barcelona, Spain, Apr. 15-22, 2005.
  • 7Bar-Cohen Y, Sherrit S, Bao X, et al. Ultrasonic/sonic sampler and sensor platform for in-situ planetary exploration [ C ]. The International Conference on MEMS, NANO and Smart Systems, San Diego, USA, Mar. 19-22, 2003.
  • 8Badescu M, Stroescu S. Rotary hammer ultrasonic/sonic drill system E C ]. The International Conference on Robotic and Automation, Pasadena, USA, May 19 - 23, 2008.
  • 9Agrawal O P, Shabana A A. Dynamic analysis of multibody systems using component modes [ J 1. Computers and Structures, 1985, 21 (6) :217 -245.
  • 10陆佑方.多体柔性动力学系统[M].北京:高等教育出版社,1996:294-296.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部