期刊文献+

基于ACO和RVM的两相流流型特征选择方法 被引量:1

Selection method of two-phase flow regime features based on ant colony optimization and relevance vector machine
下载PDF
导出
摘要 为提高流型识别的准确率,提出了基于蚁群算法(ant colony optimization,ACO)和相关向量机(relevance vector machine,RVM)封装模式的流型特征选择方法。首先采用小波包变换(wavelet packet transform,WPT)、经验模式分解方法(empirical mode decomposition,EMD)对原始压差波动信号进行分解,分别提取压差波动信号的时域无量纲指标和各分解信号的能量和熵组成融合特征。然后采用ACO和RVM进行特征选择和识别,选出有利于流型识别的特征优化组合。空气-水两相流型识别的实验结果表明:该方法能实现流型特征的有效缩减,经优化组合的最优特征子集识别率达95%以上,与其他方法相比具有更高的识别率。 A selection method of flow regime features of wrapper mode based on ant colony optimization and relevance vector machines (ACO-RVM) is proposed in order to improve the accuracy of flow regime identification. Firstly, the original differential pressure fluctuation signals are decomposed with wavelet packet transform (WPT) and empirical mode decomposition (EMD), respectively. The dimensionless indicators of original differential pressure fluctuation signals in time domain, as well as the energy and entropy of each decomposed signal are extracted respectively, which constitute the fusion features. Then ACO and RVM classifiers are used to carry out feature selection and flow regime identification so as to select more superior feature optimization combination in favor of flow regime identification. The experiment results of air-water two phase flow regime identification demonstrate that this method can reduce the number of flow regime features effectively and the identification accuracy reaches above 95% using optimized feature subset, which indicates that the proposed method has higher identification rate than other methods.
作者 孙斌 杨晓明
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第10期2181-2186,共6页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(50706006)资助项目
关键词 特征选择 蚁群优化算法 相关向量机 流型识别 feature selection ant colony optimization (ACO) algorithm relevance vector machine (RVM) flow regime identification
  • 相关文献

参考文献21

二级参考文献197

共引文献575

同被引文献26

  • 1李晓东,曾光明,黄国和,李建兵,蒋茹.城市污水量短时预测的混沌神经网络模型[J].环境科学学报,2006,26(3):416-419. 被引量:16
  • 2De Martino F, De Borst A W, Valente G, et al. 2011. Predicting EEG single trial responses with simultaneous fMRI and Relevance Vector Machine regression [ J]. NeuroImage, 56(2) : 826-836.
  • 3Durdu O F. 2010. A hybrid neural network and ARIMA model for water quality time series prediction [ J ]. Engineering Applications of Artificial Intelligence, 23 (4) : 586-594.
  • 4Gazzaz N M, Yusoff M K, Aris A Z, et al. 2012. Artificial neural network modeling of the water quality index for Kinta River (Malaysia) using water quality variables as predictors [ J ]. Marine Pollution Bulletin, 64( 11): 2409-2420.
  • 5King S L, Bennett K P, List S. 2000. Modeling noncatastrophic individual tree mortality using logistic regression, neural networks, and support vector methods [ J ]. Computers and Electronics in Agriculture, 27( 1/3): 401-406.
  • 6Liao Y, Xu J Y, Wang W J. 2011. A method of water quality assessment based on biomonitoring and muhiclass support vector machine [ J ]. Procedia Environmental Sciences, 10(Part A) : 451-457.
  • 7Liu S Y, Tai H J, Ding Q S, et al. 2013. A hybrid approach of support vector regression with genetic algorithm optimization for aquaculture water quality prediction [ J ]. Mathematical and Computer Modelling, 58(3/4) : 458-465.
  • 8Liu S Y, Xu L Q, Jiang Y, et aL 2014. A hybrid WA-CPSO-LSSVR model for dissolved oxygen content prediction in crab culture [ J ]. Engineering Applications of Artificial Intelligence, 29 : 114-124.
  • 9Maier H R, Dandy G C. 1996. The use of artificial neural networks for the prediction of water quality parameters [ J ]. Water Resources Research, 32(4): 1013-1022.
  • 10Maier H R, Dandy G C. 2000. Neural networks for the prediction and forecasting of water resources variables : a review of modelling issues and applications [ J ]. Environmental Modelling & Software, 15 ( 1 ) : 101-124.

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部