期刊文献+

彩色纹理图像分解的VO模型及其Split Bregman方法 被引量:4

VO model and its Split Bregman method for color texture image decomposition
下载PDF
导出
摘要 彩色纹理图像分解的处理模型和方法是近年来纹理图像处理研究的热点。为实现彩色纹理图像的分解,在介绍TV(total variation)模型及其Split Bregman方法的基础上,通过辅助变量和Bregman迭代参数,将Split Bregman方法引入到VO(Vese-Osher)模型中,提高了计算速度。通过数值实验比较了VO模型与TV模型在彩色纹理图像分解中的效果,验证了基于Split Bregman方法的VO模型的有效性和效率。 The models and methods of color texture image decomposition are the research focus of texture image pro- cessing in recent years. In order to realize color texture image decomposition, based on the introduction of TV ( total variation) model and its Split Bregman method ,this paper applies Split Bregman method to VO (Vese-Osher) model through introducing auxiliary variables and Bregman iterative parameters, which increases the calculation speed. Some numerical examples of color texture image decomposition are used to compare the effects of VO model and TV model, which verifies the validity and efficiency of VO model based on Split Bregman method.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第10期2279-2285,共7页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61170106)资助项目
关键词 彩色图像分解 VO模型 TV模型 SPLIT Bregman方法 纹理 color image decomposition VO ( Vese-Osher ) model TV ( total variat ) model Split Bregman method texture
  • 相关文献

参考文献19

  • 1RUDIN L,OSHER S , FATEMI E. Nonlinear total varia- tion based noise removal algorithms [ J ]. Physica D, 1992, 60 : 259-268.
  • 2MUMFORD D, SHAH J. Optimal approximations by piecewise smooth functions and associated variational problems [ J ]. Communications on Pure and Appl. Maths. , 1989,42( 5 ) : 577-685.
  • 3PERONA P, MALIK J. Scale-space and edge detection usinganisotropic diffusion [ J ]. IEEE TPAMI, 1990, 12 (7) : 629-639.
  • 4AUBERT G, VESE L. A variational method in image re-covery[J]. SIAM J. on Num. Anal., 1997, 34 (5): 1948-1979.
  • 5MEYER Y. Oscillating patterns in image processing and non- linear evolution equations [ M ]. University Lecture Scries, Boston, USA : American Mathematical Society ,2001.
  • 6VESE L, OSHER S. Modeling textures with total variation minimization and oscillating patterns in image processing [ J ]. Journal of Scientific Computing, 2003, 19 ( 11 ) : 553 -572.
  • 7VESE L, OSHER S, Color texture modeling and color im- age decomposition in a variational-PDE approach [ C ], Symbolic and Numeric Algorithms for Scientific Compu- ting 2006, SYNASC '06,2006,103-110.
  • 8OSHER S, SOLE A, Vese L. Image Decomposition and restoration using total variation minimization and the I-I-1 norm [ J ]. Journal of Multiscale Modeling and Simulation, 2003,1 (3) : 349-370.
  • 9AUJOL J F, CHAMBOLLE A. Dual norms and image de- composition models[ J ]. International Journal on Comput- er Vision, 2005 : 85-104.
  • 10CHAN T, ESEDOGLU S, PARK F. Image decomposition combining staircase reduction and texture extraction [ J ]. JC1,2007,18 (6) : 464-486.

二级参考文献49

共引文献47

同被引文献49

  • 1曹茂永,孙农亮,郁道银.离焦模糊图像清晰度评价函数的研究[J].仪器仪表学报,2001,22(z2):259-260. 被引量:48
  • 2甄小仙,刘哲,马聪.结合级联字典和双层稀疏分解的图像重构[J].汁算机工程与应用,2011,47(23):154-156.
  • 3VESE L A, OSHER S J. Modeling textures with total variation mini- mization and oscillating patterns in image processing[ J]. Journal of Scientific Computing, 2003, 19(1/2/3) : 553 -572.
  • 4STARCK J L, ELAD M, DONOHO D L. Image decomposition via the combination of sparse representations and variational approach [ J]. IEEE Transactions on Image Processing, 2005, 14( 10): 1570 - 1582.
  • 5OSHER S J, SOLE A, VESE L A. Image decomposition and resto- ration using total variation minimization and the H^-1 norm[ J]. Multi- scale Modeling and Simulation: A SIAM Interdisciplinary Journal, 2003, 1(3) : 349 -370.
  • 6LET M, VESE L A. Image decomposition using total variation and div (BMO) * [ J]. Multiscale Modeling and Simulation, 2005, 4(2) : 390 - 423.
  • 7GARNETF J B, LET M, MEYER Y, VESE L A. Image decompo- sition using total variation and homogeneous besov spaces[ J]. Ap-plied and Computational Harmonic Analysis, 2007, 23(1) : 25 -56.
  • 8AMBROSIO L, TORTORELLI V. Approximation of functionals de- pending on jumps by elliptic functionals via F-convergence[ J]. Communication on Pure and Applied Mathematics, 1990, 43(8): 999 - 1036.
  • 9FELAENSZW ALB P , HUTIENLOCHER D. Efficient graph-based image segmentation[J]. InternationalJournal of Computer Vision, 2004, 59 ( 2) : 167 -181.
  • 10MOORE A , PRINCE S. Superpixel lattices[C]. IEEE Conference on Computer Vision and Pattern Recognization ,2008: 1-8.

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部