期刊文献+

基于多尺度水平集的MR图像海马区分割方法 被引量:5

Hippocampus region segmentation method in MR images based on multi-scale level set
下载PDF
导出
摘要 针对MR图像中海马区存在灰度不均匀性,基于区域动态轮廓的C-V模型只利用区域信息无法获得准确的海马区分割问题,结合多尺度边缘约束的演化思想和图像区域的全局信息,提出了一种结合边缘和区域信息的多尺度水平集MR(magnetic resonance)图像海马区分割方法。首先,在C-V模型的基础上采用内部约束能量项,消除水平集的重初始化,提高分割速度;其次,改进水平集函数中外部能量项的图像区域全局信息,解决由于灰度不均匀所引起的分割不准确问题;最后,在水平集函数的外部能量项中加入基于多尺度图像边缘的梯度信息,作为边缘约束停止项,使分割效果达到优化。实验结果表明,该算法对存在灰度不均匀性的图像海马区分割速度快、准确率高。 Aiming at the problems that intensity inhomogeneity exists in hippocampus region in magnetic resonance (MR) images, and the C-V model based on regional dynamic contour only uses region information and cannot obtain accurate hippocampus region segmentation result, a new hippocampus region segmentation method in MR images based on level set is proposed in this paper, which combines edge and region information. The method considers the evolution thought of multi-scale edge restraint and global information of image region. Firstly, on the basis of C-V model, the internal constrained energy item is used to eliminate the re-initialization of the level set to improve the segmentation speed. Secondly, the image region global information of the external energy item in the level set function is improved to solve the inaccurate segmentation problem caused by image intensity inhomogeneity. Finally, the gradient information based on the multi-scale image edge is added in the external energy item of the level set function as edge constraint stop item to optimize the segmentation result. Experimental results show that this method is fast and accurate in intensity inhomogeneity hippocampus region segmentation in MR images.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第10期2286-2292,共7页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61001047) 中央高校基础科研业务费(N110804005)资助项目
关键词 水平集 多尺度分割 灰度不均匀 脑部MR图像 level set multi-scale segmentation intensity inhomogeneity brain MR image
  • 相关文献

参考文献14

  • 1ATLAS S W. Magnetic resonance imaging of the brain and spine[ M]. 3rd ed. Philadelphia Lippincott Williams and Wilkins,2002.
  • 2贾同,魏颖,吴成东.基于几何形变模型的三维肺血管图像分割方法[J].仪器仪表学报,2010,31(10):2296-2301. 被引量:18
  • 3虞红伟,厉力华,徐伟栋,刘伟,张娟,邵国良.一种基于水平集的多尺度乳腺肿块分割方法[J].仪器仪表学报,2010,31(6):1418-1423. 被引量:19
  • 4OSHER S, SETHIAN J A. Fronts propagating with cura- ture-dependent speed: algorithms based on Hamilton-Ja- cobi formulations [ J ]. Journal of Computational Physics, 1988,79 : 12-49.
  • 5张霞,汪超.医学图像处理技术及发展趋势[J].中外医学研究,2010,8(7):22-23. 被引量:3
  • 6CHAN T, VESE L. Active contours without edges [J]. IEEE Transaction on Image Processing, 2001,10 ( 2 ) : 266 -277.
  • 7CHENG L, YANG J, FAN X. A generalized level set for- mulation of the Mumford-Shah functional for brain MR im- age segmentation [ M ]. Heidelberg, Berlin : Springer,2005.
  • 8LI CH M, XU CH Y , GUI CH F, et al. Level set evolution without re-initialization: A new variational formulation [ J]. Computer Society Conference On Computer Vision and Pattern Recognition,2005.
  • 9ZHANG K H , SONG H H , ZHANG L . Active contours driven by local image fitting energy [ J ]. Pattern Recogni- tion, 2009,43 : 1199-1206.
  • 10KHALIFA F, EL-BAZ A, GIMEL G, et al. Non-invasive image-based approach for early detection of acute renal rejection [ J ]. Medical Image Computing and Computer Assisted Intervention,2010, Part I, LNCS 6361 : 10-18.

二级参考文献36

共引文献125

同被引文献46

  • 1徐春燕,冯学智,赵书河,肖鹏峰.基于数学形态学的IKONOS多光谱图像分割方法研究[J].遥感学报,2008,12(6):980-986. 被引量:11
  • 2唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 3李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 4胡元奎,汪增福.快速的人脸轮廓检测及姿态估计算法[J].模式识别与人工智能,2006,19(5):652-657. 被引量:4
  • 5RASHEDI E, NEZAMABADI-POUR H. A stochastic gravitational approach to feature based color image seg- mentation [ J ]. Engineering Applications of Artificial In- telligence, 2013,26 (4) : 1322-1332.
  • 6MYLONAS S K, STAVRAKOUDIS D G, THEOCHARIS J B. GeneSIS: A GA-based fuzzy segmentation algorithm for remote sensing images [ J ]. Knowledge-Based Sys- tems, 2013,54(12) :86-102.
  • 7CLAUSI D A. An analysis of co-occurrence texture statis- tics as a function of grey level quantization[ J]. Canadian Journal of Remote Sensing, 2002,28( 1 ) :45-62.
  • 8CLAUSI D A, ED JERNIGAN M. Designing Gabor filters for optimal texture separability [ J ]. Pattern Recognition, 2000,33( 11 ) :1835-1849.
  • 9MURA M D, BENEDIKTSSON J A, WASKE B, et al. Morphological Attribute Profiles for the Analysis of Very High Resolution Images[J]. IEEE Transactions on Geo- science and Remote Sensing,2010,48 (10) :3747-3762.
  • 10MURA M D, BENEDIKTSSON J A, WASKE B, et al.Extended profiles with morphological attribute filters for the analysis of hyperspeetral data[J]. International Jour- nal of Remote Sensing, 2010,31 ( 22 ) : 5975-5991.

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部