期刊文献+

特征约束的四面体生成方法与案例分析 被引量:2

Algorithm of Mesh Generation of Feature Constraint-based Tetrahedralization
原文传递
导出
摘要 在虚拟地理环境(VGE)建模过程中,由于地学领域分析对象普遍具有边界复杂、空间特征约束较多(包括点、线、面、内洞)等特点,并且地学分析和计算对网格质量要求较高,故而难以构建能够准确顾及地学对象复杂的特征约束且满足地学分析的高质量三维网格。针对这一问题,本文提出了一种约束型Delaunay四面体网格离散算法,即首先将复杂地学对象及其各种特征约束表示为分段连续线性组合物(Piecewise Linear Complexes,PLC)中的一系列约束点、约束线段和约束面,然后利用PLC中的点集进行Delaunay四面体初始剖分,在网格离散过程中通过添加额外的节点,逐一恢复丢失的约束线段和约束面,利用限定网格单元最大半径边长比(或体积)来控制网格质量。利用该算法可以产生既满足各种特征约束条件又具有高质量的四面体网格。 In the modeling process of Virtual Geographic Environment (VGE), as the geological objects generally have characteristics such as complex boundary, many spatial feature constraints including point, line, face and inside hole type, and meanwhile geosciences analysis and calculation require meshes with high quality, it is hard to construct three-dimensional meshes which regard for complex spatial feature constraints of geological objects exactly and have high quality for geosciences analysis and calculation. Ai- ming at this problem, a constrained Delaunay discrete algorithm of tetrahedral mesh is put forward in this paper. This algorithm first expresses constrained features of complex geological objects as a series of con- straint points, constraint segments and constraint faces in Piecewise Linear Complexes (PLC), and then implements the initial Delaunay tetrahedral subdivision from the initial point set of the geological objects Piecewise Linear Complexes by using the Bowyer-Watson algorithm. Following the upper steps, the algo- rithm recovers the lost constraint lines and the lost constraint faces in sequence through adding some extra vertices during the mesh discrete process and it should guarantee the adding vertices do not encroach other constraint lines or constraint faces. The constraint face recovery is after the constraint line recovery and it is more difficult and complex than the constraint line recovery. In this step, some local meshes are deman- ded to reconstruct and must conform to the Delaunay empty circumsphere criterion. And then, the object model external tetrahedron elements should be deleted by adopting a marking method. After this step, it performs the mesh quality control process by restricting the maximum radius-distance ratio or the volume of tetrahedron element in the mesh. In this step, some extra vertices are also added in the tetrahedron ele- ments which can not satisfy the user restricting quality. It is proved that the algorithm can produce me- shes not only satisfying different constrained criteria but also with high quality for geosciences analysis and calculation.
出处 《地球信息科学学报》 CSCD 北大核心 2012年第5期555-561,共7页 Journal of Geo-information Science
基金 国家自然科学基金项目(40801147 41001224) 江苏高校优势学科建设工程资助项目
关键词 特征约束 地学分析 DELAUNAY算法 四面体剖分 feature constrainted geosciences analysis Delaunay tetrahedralization
  • 相关文献

参考文献18

二级参考文献99

共引文献92

同被引文献24

  • 1赵建军,王启付.边界一致的Delaunay四面体网格稳定生成算法[J].机械工程学报,2004,40(6):100-106. 被引量:8
  • 2崔汉国,胡瑞安,金瑞峰,杨叔子.三维点集Delaunay三角剖分的自动生成与修改算法[J].工程图学学报,1995,16(2):1-7. 被引量:3
  • 3Ghouali M A, Duavant G, Ortola S, et al. Local analytical design sensitivity analysis of the forging problem using FEM[J]. Computer Methods in Applied Mechanics and Eng, 1998,163:55-70.
  • 4Murdoch P, Benzley S E. The spatial twist continuum: A connectivity based method for representing all-hexahe- dral finite element meshes[C]. Proceedings, 4th Interna- tional Meshing Roundtable, 1995:243-251.
  • 5Thacker W C. Amethod for automatingthe construction of ir- regular computational grids for stormsurge forecast models [J]. Journal of Computational Physics, 1980,37:371-387.
  • 6Schneiders R. Octree-based hexahedral mesh generation [J]. International Journal of Computational Geometry & Applications, 2000,10(4):383-398.
  • 7孙璐.基于栅格法的三维六面体网格自适应生成箅法及优化技术研究[D].济南:山东大学,2012.
  • 8Tchonk F, Khachan M, Guibault F, et al. Constructing anisotropic geometric metrics using octrees and skeletons [C]. Proceedings of the 12th International Meshing Round- table, 2003.
  • 9Schneiders R. Octree-based hexahedral mesh generation [J]. International Journal of Computational Geometry & Applications,2000,10(4):383-398.
  • 10Weiler F, Schindler R, Sehneriders R. Automatic geome- try-adaptive generation of quadrilateral and hexahedral el-ement meshes for the FEM[C]. Numerical grid genera- tion in computational field simulations, 1996: 689-697.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部