期刊文献+

基于神经网络的复合变换域视频水印算法研究 被引量:1

Research on Video Watermark Algorithm in Composite Transform Domain Based on Neural Network
下载PDF
导出
摘要 针对目前视频水印算法存在的鲁棒性较差,可靠性较低等问题,提出了一种结合神经网络将二值水印嵌入到经过离散小波变换(DWT)和离散余弦变换(DCT)后的宿主视频中的新方法;为使算法具有更好的不可见性、鲁棒性和实用性,利用三层RBF神经网络训练出水印嵌入强度,在视频中自适应嵌入水印;该方法是对宿主视频进行DWT处理,再对逼近子图LL进行DCT处理,通过修改DCT系数嵌入水印信息;在嵌入之前对二值水印进行了Arnold变换来加密;通过实验结果中PSNR与NC的值表明,算法具有很强的抗攻击和承受帧删除、帧平均等操作的能力,不可感知性好,鲁棒性明显优于一般的嵌入算法。 In view of the problems that the current video algorithms have poor robustness and lower reliability, a new scheme of embedding watermarking into video based on neural network, discrete wavelet transform (DWT) and discrete cosine transform (DCT) was proposed in this paper. In order to improve the invisibility, robust and its usefulness of the algorithm, use the three--layer neural network training to get the embedded strength and embed watermark into video adaptively. The method is to do DWT for the video, then do DCT for LL. Embed the watermarking information in the video through modifying the DCT coefficients. Before embedding, enerypt the binary watermarking by making Arnold transform. The value of PSNR and NC of the experimental results show that the new algorithm has strong ability for the attack and to bear frame dropping and frame averaging. It also has the good invisibility and robustness, and the algorithm is better than the usual embedded method.
出处 《计算机测量与控制》 CSCD 北大核心 2012年第10期2802-2804,共3页 Computer Measurement &Control
基金 陕西省教育厅项目(XK0907-5) 西安市科技计划项目(SF1007) 陕西省教育厅科研计划项目(09JK371)
关键词 视频版权保护 离散余弦变换 离散小波变换 神经网络 视频水印 video copyright protection discrete cosine transform discrete wavelet transform neural network video watermarking
  • 相关文献

参考文献10

二级参考文献75

共引文献23

同被引文献18

  • 1Cands E, Romberg J, Tao T. Robust uncertainty princi- ples:exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Trans on Information Theory ,2006,52(2) :489 - 509.
  • 2Donoho D L. Compressed sensing [ J ]. IEEE Trans on Information Theory,2006,52(4) :1 289 -1 306.
  • 3Wu J, Liu F, Jiao L C. Multivariate compressive sensing for image reconstruction in the wavelet domain: using scale mixture models [ J ]. Image Processing, IEEE Transactions on,2011,20(12) :3 483 -3 494.
  • 4Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit [ J ]. Infor-mation Theory, IEEE Transactions on, 2007,53 ( 12 ) : 4 655 -4 666.
  • 5Ji S,Xue Y, Carin L. Bayesian compressive sensing[ J]. Signal Processing, IEEE Transactions on, 2008,56 ( 6 ) : 2 346 -2 356.
  • 6Babacan S D, Molina R, Katsaggelos A K. Bayesian com- pressive sensing using Laplace priors [ J ]. Image Pro- cessing,IEEE Transactions on,2010,19( ! ) :53 - 63.
  • 7Baron D, Sarvotham S, Baraniuk R G. Bayesian compres- sive sensing via belief propagation [ J ]. Signal Process- ing, IEEE Transactions on,2010,58 ( 1 ) :269 - 280.
  • 8Zayyani H, Babaie-Zadeh M, Jutten C. An iterative bay- esian algorithm for sparse component analysis in pres- ence of noise [ J ]. Signal Processing, IEEE Transactions on,2009,57( 11 ) :4 378 -4 390.
  • 9柏均,张敏瑞.基于图像分类的自适应图像水印新算法[J].西安科技大学学报,2008,28(1):122-127. 被引量:5
  • 10侯颖.三维小波零块编码算法在超光谱图像压缩中的应用[J].西安科技大学学报,2008,28(3):551-554. 被引量:2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部