期刊文献+

用凸化子讨论不等式约束的多目标优化问题的最优性条件

Optimality conditions for non-differentiable multi-objective programming in terms of convexificators
原文传递
导出
摘要 对具有不等式约束的多目标优化(multiobjective programming,MP)问题,利用凸化子的概念,在广义Slater约束规格和广义线性独立约束规格下给出了必要条件,并将研究结果推广到多目标优化的情形。 For a non-differentiable multi-objective programming (MP) problem with inequality constraints, the necessa- ry conditions were established under generalized Slater constraint qualification and generalized linear independence con- straint qualification in terms of the concept of convexificators, and the results were extended to the multi-objective opti- mization.
作者 田学全 徐述
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2012年第10期75-80,共6页 Journal of Shandong University(Natural Science)
基金 重庆市教委资助项目(kj121404)
关键词 有效解 广义Slater约束规格 广义线性独立约束规格 凸化子 必要条件 efficient solution generalized Slater constraint qualification generalized linear independence constraint qualification convexificator necessary condition
  • 相关文献

参考文献15

  • 1KUHN H W, TUCKER A W. Nonlinear programming [ C ]// Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability. California. University of California Press, 1951 : 481-492.
  • 2CLARKE F H. Optimization and nonsmooth analysis[M]. New York: Wiley, 1983.
  • 3HIRIART-URRUTY J B. On optimality conditions in nondifferentiable programming [ J ]. Mathematical Programming, 1978, 14:73-86.
  • 4JEYAKUMAR V, LUC T D. Approximate Jacobian matrices for continuous maps and C^1 optimization [ J ]. SIAM Journal on Control and Optimization, 1998, 36 : 1815-1832.
  • 5JOURANI A. Constraint qualification and Lagrange multipliers in nondifferentiable programming problems [ J ]. Journal of Op- timization Theory and Applications, 1994, 81:533-548.
  • 6DEMYANOV V F. Convexification and concavification of positively homogeneous functions by the same family of linear func- tions[R]. Pisa: University of Pisa, 1994:1-11.
  • 7JEYAKUMAR V, LUC T D. Nonsmooth calculus, minimality, and monotonicity of convexificators [ J ]. Journal of Optimiza- tion Theory and Applications, 1999, 101:599-621.
  • 8DEMYANOV V F, JEYAKUMAR V. Hunting for a smaller convex subdifferential [ J ]. Journal of Global Optimization, 1997, 10:305-326.
  • 9DUTTA J, CHANDRA S. Convexifactors, generalized convexity and optimality conditions [ J ]. Journal of Optimization Theo- ry and Applications, 2002, 113:41-64.
  • 10DUTTA J, CHANDRA S. Convexifiactors, generalized convexity, and vector optimization[ J ]. Optimization, 2004, 53:77- 94.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部