摘要
p(x)-调和方程是一类比较重要的微分方程模型,它来自于非牛顿流体问题及非线性弹性问题。该文利用临界点理论研究p(x)-调和方程解的存在性。在比Ambrosetti-Rabinowitz条件更弱的超线性条件下,得到了无穷多解存在的充分条件,所得结论推广了已知结果。
P(x)-biharmonic equation is an important model of differential equation from non-Newtonian fluid theory and nonlinear elasticity. In this paper, we investigate the existence of infinitely many solutions for p(x)-biharmonic e- quation by clitical point theory. Under a condition weaker than Ambrosetti-Rabinowitz's superlinear condition, some sufficient conditions for the existence of infinitely many solutions are obtained, and results improve the existing ones.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2012年第10期116-120,共5页
Journal of Shandong University(Natural Science)
基金
中央高校基本科研业务费专项资助(ZYZ2011078)
西北民族大学校中青年科研项目(12XB38)