期刊文献+

一类超线性p(x)-调和方程的无穷多解 被引量:1

Infinitely many solutions for a class of superlinear p(x)-biharmonic equation
原文传递
导出
摘要 p(x)-调和方程是一类比较重要的微分方程模型,它来自于非牛顿流体问题及非线性弹性问题。该文利用临界点理论研究p(x)-调和方程解的存在性。在比Ambrosetti-Rabinowitz条件更弱的超线性条件下,得到了无穷多解存在的充分条件,所得结论推广了已知结果。 P(x)-biharmonic equation is an important model of differential equation from non-Newtonian fluid theory and nonlinear elasticity. In this paper, we investigate the existence of infinitely many solutions for p(x)-biharmonic e- quation by clitical point theory. Under a condition weaker than Ambrosetti-Rabinowitz's superlinear condition, some sufficient conditions for the existence of infinitely many solutions are obtained, and results improve the existing ones.
作者 张申贵
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2012年第10期116-120,共5页 Journal of Shandong University(Natural Science)
基金 中央高校基本科研业务费专项资助(ZYZ2011078) 西北民族大学校中青年科研项目(12XB38)
关键词 p(x)-调和方程 超线性 临界点 p(x)-biharmonic equation superlinear critical point
  • 相关文献

参考文献8

  • 1FAN Xianling. On the sub-supsulotion methods for p(x)-Laplacian equations[J]. J Math Anal Appl, 2007, 330:665-682.
  • 2FAN Xianling. Solutions of p (x)-Laplacian Dirichlet problems with singular coefficients [ J ]. J Math Anal Appl, 2005, 312:464-477.
  • 3FAN Xianling, ZHANG Qihu, ZHAO Dun. Eigenvalues of p(x)-Laplacian Dirichlet problem[J]. J Math Anal Appl, 2005, 302 : 306-317.
  • 4FAN Xianling, ZHANG Qihu, ZHAO Dun. Eigenvalues of p(x)-Laplacian Dirichlet problem[ J ]. J Math Anal Appl, 2005, 302 : 306-317.
  • 5AMROUSS A E, MORADI F, MOUSSOUI M. Existence of solutions for fourth-order PDES with variable exponents [ J ]. J Differential Equations, 2009, 153 : 1-13.
  • 6FAN Xianling. A Biezis-Nirenberg type theorem on local minimizers for p (x)-Kirchhoff Dirichlet problems and applications [J]. Differential Equation and applications, 2010, 2:537-551.
  • 7DING Yanheng, LUAN Shixia. Multiple solutions for a class of nonlinear Schrodinger equations [ J ]. J Differential Equations, 2004, 207: 423-457.
  • 8WILLEM M. Minimax theorems[M]. Boston: Birkhauser, 1996.

同被引文献11

  • 1Willem M.Minimax Theorems. . 1996
  • 2Lingju Kong.??Eigenvalues for a fourth order elliptic problem(J)Proceedings of the American Mathematical Society . 2014 (1)
  • 3Yanheng Ding,Shixia Luan.??Multiple solutions for a class of nonlinear Schr?dinger equations(J)Journal of Differential Equations . 2004 (2)
  • 4Abdelrachid El Amrouss,Fouzia Moradi,Mimoun Moussaoui.Existence of solutions for fourth-order PDEs with variable exponents. Electronic Journal of Oncology . 2009
  • 5Vasilij V. Zhikov.On some variational problems. Russ. J. Math. Phys . 1997
  • 6Chen, Yunmei,Levine, Stacey,Rao, Murali.Variable exponent, linear growth functionals in image restoration. SIAM Journal on Applied Mathematics . 2006
  • 7Ruzicka M.Electrorheologial Fluids:Modeling and Mathematial Throry. . 2000
  • 8YIN Honghui,LIU Ying.Existence of three solutions for a Navier boundary value problem involving the p (x)-biharnonic operator. Bull.Korean Math Soc . 2013
  • 9AFROUZI G A,MIRZAPOUR M,RADULESCU V D.Nonlocal fourth-order Kirchhoff systems with variable growth:low and high energy solutions. Collectanea Mathematica . 2015
  • 10Honghui Yin,Zuodong Yang.??Three Solutions for a Navier Boundary Value System Involving the (p(x); q(x))-Biharmonic Operator(J)British Journal of Mathematics & Computer Science . 2013 (3)

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部