期刊文献+

二次项利率期限结构理论与模型

Quadratic Term Structure Theory and Model of Interest Rates
原文传递
导出
摘要 近些年动态利率期限结构的研究得到了长足的发展,为解决大部分利率衍生品的定价问题提供了一个定型的解决办法。但是未涵盖的波动率的存在使得许多动态利率期限结构模型并不能完全满足当前利率衍生产品定价和套期保值的需要。本文在对二次项期限结构模型的设定及估计方法分析的基础上,运用该模型对LIBOR零息债券进行模拟和估计,结果发现QTSMs能够很好的拟合LIBOR债券的收益率。从而试图为利率衍生品的定价和套期保值提供一个可借鉴的方法。 In recent years,dynamic term structure of interest rates has a significant development,and it provides a method to solve the pricing of interest rate derivatives.However,because of the uncovered volatility,lots of the dynamic term structure models of interest rates cannot completely meet the needs of pricing and hedging of interest rate derivatives.This paper analyses the setting and estimation method of quadratic term structure model in details,simulates and estimates LIBOR zero coupon bonds based on the model.We have found that QTSMs can fit the yields of LIBOR bond very well.This study provides a referencemethod for the pricing and hedging of interest rate derivatives for reference.
出处 《系统工程》 CSSCI CSCD 北大核心 2012年第8期45-51,共7页 Systems Engineering
基金 中国博士后基金资助项目(20080440538) 湖南省哲学社会科学基金资助项目(08YBB362)
关键词 二次项期限结构模型 债券收益率 未涵盖波动率 统计推断 Quadratic Term Structure Model Yields of Bonds Uncovered Volatility Statistical Inference.
  • 相关文献

参考文献5

  • 1Ahn D-H, et al. Quadratic term structure models: Theory and evidence [J]. Review of Financial Studies, 2002,15 : 243- 288.
  • 2Bansal R, Zhou H. Term structure of interest rates with regime shifts[J]. Journal of Finance, 2002,57 : 1997-2043.
  • 3Jarrow R,Li H T,Zhao F. Interest rate caps "smile" too! But can the LIBOR market models capture it? [Z]. Cornell University,2003.
  • 4Piazzesi M. Bond yields and the federal reserve[J]. Journal of Political Economy, 2005,113 : 311 - 344.
  • 5周丽,李金林.利率期限结构理论与模型[J].北京工商大学学报(自然科学版),2004,22(5):62-66. 被引量:5

二级参考文献9

  • 1Ait-Sahalia Y.Testing Continuous-Time Models of the Spot Interest Rate[J].Review of Financial Studies,1996,9:385-426.
  • 2Black F,Derman E,Toy W A.one-factor model of interest rates and its application to Treasury bond options[J].Financial Annals,1990,146:33-49.
  • 3Cox J C,Ingersoll J E,Ross S A.A theory of the term structure of interest rates[J].Econometrica,1985,53:385-467.
  • 4Hull J,White A.Pricing interest rate derivative securities[J].Review of Financial Studies,1990,3:573-592.
  • 5Longstaff F,Schwartz E.Interest rate volatility and the term structure: a two factor general equilibrium model[J].Journal of Finance,1992,47:1209-1227.
  • 6Vasicek O.An equilibrium characterization of the term structure[J].Journal of Financial Economics,1997,5:177-188.
  • 7谢赤.一个动态化的利率期限结构模型群[J].预测,2000,19(3):49-52. 被引量:10
  • 8吴雄伟,谢赤.连续时间利率期限结构模型统一框架的演变及其改进[J].系统工程理论方法应用,2002,11(3):181-184. 被引量:10
  • 9李和金,郑兴山,李湛.非参数利率期限结构模型的实证检验[J].上海交通大学学报,2003,37(4):607-609. 被引量:14

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部