期刊文献+

血管内皮生长因子通过CXCR4增强间充质干细胞的趋化能力 被引量:1

Vascular endothelial growth factor enhances chemotactic activity of mesenchymal stem cells through promoting CXCR4 expression
下载PDF
导出
摘要 目的探索血管内皮生长因子能否通过促进间充质干细胞高表达CXCR4而增加其趋化能力。方法体外培养间充质干细胞铺满约90%时,给与血管内皮生长因子刺激,然后在不同的时间点,用流式细胞术检测间充质干细胞胞内表达CXCR4的变化。CM-DiI标记预先经过及未经过血管内皮生长因子处理的间充质干细胞,通过尾静脉注射到肝损伤小鼠体内,并通过CM-DiI的荧光强度比较来明确趋化到肝脏的间充质干细胞数量的差异。结果经过血管内皮生长因子刺激后,原来低表达CXCR4的间充质干细胞高表达CXCR4。而且在6小时的时间点,CXCR4表达量最高。经刺激后高表达CXCR4的间充质干细胞趋化能力得到提高。结论血管内皮生长因子上调CXCR4的表达,增强间充质干细胞的归巢及趋化能力。 Objective To investigate the effect of vascular endothelial growth factor (VEGF) on CXCR4 expression by mesenchymal stem cells (MSCs) in vitro. Methods CXCR4 expressed from MSCs was detected by flow cytometry. MSCs were stimulated by VEGF. At different time points, mesenchymal stem cells were collected, and then flow cytometry detected CXCR4 expression of MSCs. After cells were treated with VEGF, cells were stained with CM-DiI. These cells were transplanted into liver injuried mice through tail vein. Fluorescence of CM-DiI was detected by fluorescence microscope. Results VEGF could up-regulate CXCR4 expression by MSCs. And, after stimulation of VEGF on MSCs, MSCs increased chemotactic activity. Furthermore, inflammatory factor in serum from fulminant hepatic failur mice did not affect CXCR4 expression of MSCs. Conclusion VEGF up-regulates CXCR4 expression by MSCs. Increasing CXCR4 expression of MSCs by VEGF enhances MSCs chemotactic activity and homing ability.
出处 《分子诊断与治疗杂志》 2012年第5期299-303,共5页 Journal of Molecular Diagnostics and Therapy
基金 国家自然科学基金(30872618)
关键词 血管内皮生长因子 间充质干细胞 CXCR4 趋化能力 Vascular endothelial growth factor Mesenchymal stem cells CXCR4 Chemotactic activity
  • 相关文献

参考文献16

  • 1Giordano A, Galderisi U, Marino I R. From the laboratory bench to the patient's bedside: an update on clinical trials with mesenchymal stem cells[J]. J Cell Physiol, 2007, 211(1): 27-35.
  • 2Pittenger M F, Mackay A M, Beck S C, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411): 143-147.
  • 3Le Blanc K, Tammik L, Sundberg B, et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex[J]. Scand J Immunol, 2003, 57(1): 11-20.
  • 4Le Blanc K, Frassoni F, Ball L, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft- versus-host disease: a phase II study[J]. Lancet, 2008, 371(9624): 1579-1586.
  • 5Liao W, Xie J, Zhong J, et al. Therapeutic effect of human umbilical cord multipotent mesenchymal stromal cells in a rat model of stroke[J]. Transplantation, 2009, 87(3): 350-359.
  • 6Murphy J M, Fink D J, Hunziker E B, et al. Stem cell therapy in a caprine model of osteoarthritis[J]. Arthritis Rheum, 2003, 48(12): 3464-3474.
  • 7Jin J, Zhao Y, Tan X, et al. An improved transplantation strategyfor mouse mesenchymal stem cells in an acute myocardial infarction model[J]. PLoS One, 2011, 6(6):e 21005.
  • 8Dar A, Goichberg P, Shinder V, et al. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells[J]. Nat Immunol, 2005, 6(10): 1038-1046.
  • 9Kucia M, Ratajczak J, Reca R, et al. Tissue-specific muscle, neural and liver stem/progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury[J]. Blood Cells Mol Dis, 2004, 32(1): 52-57.
  • 10Yu X, Chen D, Zhang Y, et al. Overexpression of CXCR4 in mesenchymal stem cells promotes migration, neuroprotection and angiogenesis in a rat model of stroke[J]. J Neurol Sci, 2012, 316(1-2): 141-149.

二级参考文献18

  • 1Baron F, Lechanteur C, Willems E, et al. Cotransplantation of mesenchymal stem cells might prevent death from graft- versus-host disease (GVHD) without abrogating graft- versus-tumor effects after HLA-mismatched allogeneic transplantation following nonmyeloablative conditioning[J] Biol Blood Marrow Transplant, 2010, 16(6): 838-847.
  • 2Le Blanc K, Frassoni F, Ball L, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft- versus-host disease: a phase II study[J]. Lancet, 2008, 371(9624): 1579-1586.
  • 3Liao W, Xie J, Zhong J, et al. Therapeutic effect of human umbilical cord multipotent mesenchymal stromal cells in a rat model of stroke[J]. Transplantation, 2009, 87(3): 350-359.
  • 4Wang J S, Shum-Tim D, Galipeau J, et al. Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages[J]. J Thorac Cardiovasc Surg, 2000, 120(5): 999-1005.
  • 5Dar A, Goichberg P, Shinder V, et al. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells[J]. Nat Immunol, 2005, 6(10): 1038-1046.
  • 6Wynn R F, Hart C A, Corradi-Perini C, et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow[J]. Blood, 2004, 104(9): 2643-2645.
  • 7Kucia M, Ratajczak J, Reca R, et al. Tissue-specific muscle, neural and liver stem/progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury[J]. Blood Cells Mol Dis, 2004, 32(1): 52-57.
  • 8Togel F, Isaac J, Hu Z, et al. Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury[J]. Kidney Int, 2005, 67(5): 1772-1784.
  • 9Ji J F, He B P, Dheen S T, et al. Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brainafter hypoglossal nerve injury[J]. Stem Cells, 2004, 22(3): 415 -427.
  • 10Ceradini D J, Kulkarni A R, Callaghan M J, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-I[J]. Nat Med, 2004, 10(8): 858-864.

共引文献1

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部