期刊文献+

基于HOG特征和稀疏表征的鲁棒性人脸识别

HOG and Sparse Representation Based Robust Face Recognition
下载PDF
导出
摘要 在图像局部遮掩或者被局部损坏的情况下,随机投影和稀疏表征的人脸识别方法可以很好的达到正确识别的目的.但是为了得到好的识别效果,这种方法对训练库中每个人的人脸图片的数目要求比较高(至少五张以上),在实际应用中很不方便,该文将HOG(方向梯度直方图)特征引入稀疏表征的人脸识别方法中能够很好的克服这一缺点。实验表明,即使在每个人的人脸图片数只有一张的情况下,该文的方法仍然能得到很好的识剐效果。 In the case of the image partially disguised or corrupted, the face recognition of random projection and sparse representation can get the purpose of correctly identified well.To get the good recognition results,the method relatively high demand for the number of every.face image in training database(at least five or more). In practical applications it is very inconvenient.It will be well overcome this shortcoming when HOG(Histograms of Oriented Gradients) introduced in the sparse representation. Ex- periments show that even in the case of each person has only one image face, this method still can get good recognition results.
作者 刘杰 王勇军
出处 《电脑知识与技术》 2012年第9期6100-6103,共4页 Computer Knowledge and Technology
关键词 HOG 方向梯度直方图 稀疏表征 人脸识别 HOG histograms of oriented gradients sparse representation face recognition
  • 相关文献

参考文献10

  • 1Dalal N, Triggs B.Histograms of oriented gradients for human detection[C].IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Vol 2.Washington:IEEE,2005:886-893.
  • 2Wright J, Ganesh A, Yang A, et al. Robust Face Recognition via Sparse Representation. Manuscript Submitted to IEEE Trans. Pattern Analysis and Machine Intelligence, 2007.
  • 3Donoho D. For most large underdetermined systems of linear equations the minimal Ll-norm solution is also the sparsest so- lution. Pure and Applied Math. 2006, 59( 6):797-829.
  • 4Candes E, Tao T. Near-optimal signal recovery from random projections: Universal encoding strategies. IEEE Trans. Informa- tion Theory. 2006, 52(12):5406-5425.
  • 5Yang A, Ganesh A, Sastry S, et al. Fast Ll-minimization algorithms and an application in robust face recognition: a review. In Proceedings of the International Conference on Image Processing, 2010.
  • 6Turk M, Pentland A. Eigenfaces for Recognition. Journal of Cognitive Neuroscience.1991,3(1):71-86.
  • 7Belhumeur P, Hespanha J, Kriegman D.Eigenfaces vs.Fisherfaces: Recognition using Class Specific Linear Projection.IEEE Transactions on Pattern Analysis and Machine Intelligence,Special Issue on Face Recognition.1997,17(7):711-720.
  • 8S.Shan,P.Yang,X.Chen,W.Gao.AdaBoost Gabor Fisher Classifier for Face Recognition.International Workshop on Analysis and Modeling of Faces and Gestures(AMFG'O5).2005,LNCS 3723,278-291.
  • 9Ahonen T, Hadid A, Pietikainen M.Face Recognition with Local Binary Patterns.Proceeding of European Conference on Com- puter Vision(ECCV' 04).2004,LNCS3021,(1):469-481.
  • 10Zhang W,Shan S,Gao W, et al.Local Gabor Binary PatternHistogram Sequenee(LGBPHS):A Novel Non-Statistical Model for Face Representation and Recognition.Proceeding of IEEE International Conference on Computer Vision(ICCV'05).2005,1:786-791.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部