摘要
为了建立换电模式下电动汽车电池充电负荷及优化模型,对2种电动汽车换电模式即充换电模式和集中充电统一配送模式的结构、运营流程进行了分析。在满足用户换电需求的约束下,基于分时电价机制,提出考虑2种换电方式的以总充电费用最小为目标的第1阶段优化模型。第2阶段优化以第1阶段求取的最小充电费用为总充电费用的上限,以日负荷曲线波动最小为目标。以中国2020年充电负荷为例进行计算,对不同类型电动汽车采用不同的换电方式,并将换电模式与充电模式的充电负荷进行比较。计算结果表明,换电模式下无序充电情景峰荷较充电模式时增加较小,有序充电情景电网峰荷将不会增加,所提出的换电模式下有序充电模型能够有效减少充电费用及日负荷曲线波动。
To build the charging load calculation and optimization model under the battery swapping modes of electric vehicles (EVs), the structure and operation of two kinds of battery swapping modes, i.e. charging-swapping modes and centralized charging unified distribution modes, were analyzed. Then taken the constrains of satisfying the battery swapping needs of customers, the first stage coordinated charging formulation considering both the battery swap modes to minimize charging cost based on the time of use (TOU) power price mechanism were proposed. The peak load obtained from the first stage were set as the upper bound of thesecond stage optimization. In the second stage, the objective is to smooth the daily load curve fluctuation. Case studies calculate the charging loads of EVs in the year of 2020 in China, different kinds of battery swapping modes were matched for different kinds of EVs. The results were compared with those of the plug-in charging mode. The calculation results show that, the peak load under battery swapping modes increases less than the plug-in modes in the uncoordinated charging scenario. The peak load will not increase in the coordinated charging scenario under battery swapping modes. The proposed optimal model can effectively reduce charging cost and smooth the load curve.
出处
《中国电机工程学报》
EI
CSCD
北大核心
2012年第31期1-10,212,共10页
Proceedings of the CSEE
基金
国家高技术研究发展计划(863计划)重大项目(2011AA05A110)
国家自然科学基金项目(51107060)
质检公益科研专项项目(201010232)
国家电网公司科技项目~~
关键词
电动汽车
电池换电模式
电池配送
库存管理
有序充电
electric vehicles
battery swapping modes
battery distribution
inventory management
coordinatedcharging