期刊文献+

不确定图最可靠最大流算法研究 被引量:9

Algorithms of the Most Reliable Maximum Flow on Uncertain Graph
下载PDF
导出
摘要 文中首先基于可能世界模型提出了不确定图的最可靠最大流问题和可靠性计算模型,这对于构建可靠性网络、可靠传输路径选择以及系统薄弱环节分析等一系列实际问题具有重要意义;然后基于简单路径组合思想提出了一种求解最可靠最大流的算法SPCA,通过简单路径流量的组合,在无需求得所有最大流分布的情况下获得最可靠最大流,并在组合过程中引入概率剪枝与约束剪枝策略,对无效组合进行过滤,从而显著地提高了算法效率;接着文中针对SPCA算法易受路径数量及瓶颈容量影响的问题,又提出一种基于状态空间划分的最可靠最大流算法SDBA,该算法的主要思想是将不确定图所蕴含的子图空间划分为互不相交且满足最大流值的闭合区间集合,进而寻找所有闭合区间中概率最大的下界状态,经证明这个下界状态对应子图中的最大流分布为最可靠最大流;最后通过实验,比较了两种算法的性能.实验结果表明SDBA算法相对于SPCA算法其空间复杂度有一定的增加,但时间复杂度方面具有较大的优势,能够很好地解决SPCA算法性能受制于容量的问题,具有更好的性能与适用性. Reliability is one of the most important issues on system design and maintenance, such as reliable network construction, reliable transportation path selection, etc. This paper defines the most reliable maximum flow problem (MRMF) on uncertain graphs based on the possible world model, and introduces the reliability calculation model of MRMF. A simple path combina- tion (SPCA) based algorithm is put forward, which can get the most reliable maximum flow without calculating all the maximum flow distributions. Furthermore, a space decomposition based algorithm (SDBA) is proposed to avoid the influence of the numbers and the bottleneck capacity of simple paths. SDBA divides the sub-graph space of an uncertain graph into a collection of closed intervals, which are disjoint and satisfy the maximum flow constraints. Among the lower bounds of all the intervals, the one with greatest probability is proved to be the most reliable maximum flow. Finally, experimental results show the effectiveness and efficiency of the proposed algorithms.
出处 《计算机学报》 EI CSCD 北大核心 2012年第11期2371-2380,共10页 Chinese Journal of Computers
基金 国家自然科学基金项目(61073059 61232007) 江苏省自然科学基金项目(Bk2010409 Bk2011335)资助~~
关键词 不确定图 可能世界模型 最大流 流可靠性 uncertain graph possible worlds maximum flow flow reliability
  • 相关文献

参考文献26

  • 1Hintsanen P. The most reliable subgraph problem//Proceed- ings of the llth European Conference on Principles and Prac tice of Knowledge Discovery in Databases. Warsaw, 2007: 471-478.
  • 2Hintsanen P, Toivonen H. Finding reliable subgraphs from large probabilistic graphs. Data Mining and Knowledge Discovery, 2008, 17(1): 3-23.
  • 3Zou Zhao-Nian, Li JiamZhong, Gao Hong, Zhang Shuo. Mining frequent subgraph patterns from uncertain graph data. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(9) : 1203-1218.
  • 4张硕,高宏,李建中,邹兆年.不确定图数据库中高效查询处理[J].计算机学报,2009,32(10):2066-2079. 被引量:24
  • 5韩蒙,张炜,李建中.RAKING:一种高效的不确定图K-极大频繁模式挖掘算法[J].计算机学报,2010,33(8):1387-1395. 被引量:17
  • 6Potamias M, Bonchi F, Gionis A, Kollios G. K-nearest neighbors in uncertain graphs//Proceedings of the VLDB, Singapore, 2010:997-1008.
  • 7张海杰,姜守旭,邹兆年.不确定图上的高效top-k近邻查询处理算法[J].计算机学报,2011,34(10):1885-1896. 被引量:8
  • 8袁野,王国仁.面向不确定图的概率可达查询[J].计算机学报,2010,33(8):1378-1386. 被引量:11
  • 9Hua M, Pei J. Probabilistic path queries in road networks: Traffic uncertainty aware path selection//Proceedings of the 13th International Conference on Extending Database Tech nology(EDBT 2010) Lausanne. Switzerland, 2010:347-358.
  • 10Kurzhanski A B, Varaiya P. On reachability under uncer- tainty. SIAM Journal on Control and Optimization, 2002, 41(1): 181-216.

二级参考文献77

  • 1周水庚 蔚赵春 蒋豪良.图结构数据搜索的概念、问题与进展[J].中国计算机学会通讯,2007,3(8):59-65.
  • 2Shasha D, Wang T L J, Giugno R. Algorithmics and applications of tree and graph searching//Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. Madison, 2002:39-52.
  • 3Yan X, Yu P S, Han J. Graph indexing: A frequent structure-based approach//Proeeedings of the 2004 ACM SIGMOD International Conference on Management of Data. Paris, 2004:335-346.
  • 4Saito R, Suzuki H, Hayashizaki Y. Interaction generality, a measurement to assess the reliability of a protein-protein interaction. Nucleic Acids Research, 2002, 30(5): 1163-1168.
  • 5李建中 于戈 周傲英.不确定性数据管理的要求与挑战[J].中国计算机学会通讯,2009,5(4):6-14.
  • 6高宏 张炜.不确定图数据管理研究现状[J].中国计算机学会通讯,2009,5(4):31-36.
  • 7Dalvi N N, Suciu D. Efficient query evaluation on probabilistic databases. VLDB Journal, 2007, 16(4): 523-544.
  • 8Soliman M A, Ilyas I F, Chang K C. Top-k query processing in uncertain databases//Proceedings of the 23rd International Conference on Data Engineering. Istanbul, 2007:896-905.
  • 9Hintsanen P. The most reliable subgraph problem//Proceedings of the llth European Conference on Principles and Practice of Knowledge Discovery in Databases. Warsaw, 2007: 471-478.
  • 10Hintsanen P, Toivonen H. Finding reliable subgraphs from large probabilistic graphs. Data Mining and Knowledge Discovery, 2008, 17(1): 3-23.

共引文献44

同被引文献104

引证文献9

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部