期刊文献+

静态小波域内特征对比度多聚焦图像融合算法

Multifocus image fusion scheme based on feature contrast in lifting stationary wavelet domain
下载PDF
导出
摘要 针对多聚焦图像融合问题,提出了一种新的基于提升静态小波变换(lifting stationary wavelet transform,LSWT)的多聚焦图像融合方法。对经LSWT分解得到的不同频域子带系数采用不同的系数选择方案。在融合低频子带系数时考虑到人眼视觉对图像局部对比度比较敏感的特性,引入了一种新的局部特征对比度的概念,并给出了低频子带系数的选择方案。在融合高频子带系数时,充分考虑到人眼视觉对图像边缘细节比较敏感的特性而对单个像素的亮度不敏感的特性,引入了一种适应于高频子带系数的特征对比度的概念,设计出一种基于特征对比度的系数选择方案。实验证明,算法相对于传统的基于图像对比度的图像融合方法,能够提取更多的有用信息并注入到融合图像中,得到视觉效果更好,更优量化指标的融合图像。 A novel multifocus image fusion method based on lifting stationary wavelet transform (LSWT) is proposed. The selection principles, namely fusion rules of different subband coefficients, are discussed in detail. Local feature contrast is presented according to the human vision system (HVS), which is highly sensitive to the local image contrast level. Then, the fusion rule for the low-frequency subband coefficients fusion is introduced. To choose the high frequency subband coefficients, another local feature contrast is developed according to the human vision which is often sensitive to edges and directional features, but insensitive to real luminance at independent positions. Then, a novel fusion rule is proposed for fusion of the high frequency subband coefficients. Experimental results demonstrate that the proposed image fusion method is effective and can provide better performance in fusing multifocus images than the traditional contrast-based image fusion algorithms in term of informal visual inspection and objective criteria in multifocus image fusion.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第10期109-116,共8页 Journal of Chongqing University
基金 国家自然科学基金资助项目(No60974090) 中央高校基本科研业务费资助项目(NoCDJXS10172205) 中央高校基本科研业务资助项目(CDJXS12170003)
关键词 图像融合 提升静态小波变换 特征对比度 image fusion lifting stationary wavelet transform (LSWT) feature contrast
  • 相关文献

参考文献23

  • 1Do M N, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation[J]. IEEE Transactions on Image Processing, 2005, 14(12) :2091- 2106.
  • 2Cunha A L D, Zhou J P, Do M N. The nonsubsampled contourlet transform= theory, design, and applications [J]. IEEE Transactions on Image Processing, 2006, 15(10) : 3089-3101.
  • 3Piella G. A general framework for multiresolution image fusion: from pixels to regions [J]. Information Fusion, 2003, 4(4):295-280.
  • 4Pajares G, Dela C J M. A wavelet based image fusion tutorial [J]. Pattern Recognition, 2004, 37 ( 9 ): 1855-1872.
  • 5Chai Y, I.i H F, Qu J F, Image fusion scheme using a novel dual channel PCNN in lifting stationary wavelet domain[J]. Optics Communications, 2010,283(19): 3591-3602.
  • 6屈小波,闫敬文,杨贵德.改进拉普拉斯能量和的尖锐频率局部化Contourlet域多聚焦图像融合方法[J].光学精密工程,2009,17(5):1203-1212. 被引量:70
  • 7Yang S Y, Wang M, Lu Y X, et al. Fusion of multiparametric SAR images based on SW-nonsubsampled contourlet and PCNN [J]. Signal Processing, 2009,89(12): 2596-2608.
  • 8张强,郭宝龙.基于非采样Contourlet变换多传感器图像融合算法[J].自动化学报,2008,34(2):135-141. 被引量:36
  • 9Yang L, Guo B L, Ni W. Multimodality medical image fusion based on multiscale geometric analysis of ontourlet transform [J].Neurocomputing, 2008, 72(1/2/3):203- 211.
  • 10王丽,卢迪,吕剑飞.一种基于小波方向对比度的多聚焦图像融合方法[J].中国图象图形学报,2008,13(1):145-150. 被引量:22

二级参考文献21

共引文献220

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部