期刊文献+

基于AIBN材料的微流体驱动用微型正压源 被引量:1

Micro positive pressure generator based on AIBN for driving micro fluid
下载PDF
导出
摘要 针对本课题组早些时候研制的用于微量组织液透皮抽取的微流控芯片,研究了一种基于偶氮双异丁腈(azobi-sisobutyronitrile,AIBN)热分解产生气体的微型正压源,用于为微流控芯片中微量组织液的收集和输运提供驱动力。将AIBN固定到微型加热器上,微型加热器加热AIBN至70℃即可产生一定的正压力。实验结果表明,设计的微型正压源压力可控、易于制造、体积小,8.7mg的AIBN在900mA加热电流下可产生182kPa的压力,满足对微流控芯片中组织液透皮抽取所需的驱动力。 Abstract: In order to provide the driving force for the collection and transport of the micro liquid in a microfluidic chip developed by our research group in earlier research, this paper presents a micro positive pressure generator based on the released gas by thermal decomposition of azobisisobutyronitrile (AIBN). The AIBN is fixed to a micro-heater and heated to 70 ℃ to produce a certain amount of positive pressure. Experimental measurements show that this micro positive pressure generator can obtain 182 kPa pressure with heating 8.7 mg of AIBN by a heating current of 900 mA. The designed micro positive pressure generator is a smaller size, pressure controllable and easy to produce, and obtained pressure can satisfy the requirements of transdermal interstitial fluid (ISF) extraction.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2012年第10期2245-2250,共6页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.61176107) 天津市科技支撑计划重点项目(No.11ZCKFSY01500) 国家公益性行业科研专项重点项目(No.GYHY2009060371)
关键词 微流控芯片 微流体驱动 微型正压源 偶氮双异丁腈(AIBN) 微型加热器 Key words: microfluidic chip driving micro fluidies micro positive pressure generator azobisisobutyronitrile (AIBN) micro-heater
  • 相关文献

参考文献14

  • 1DAVID C K. A review of continuous glucose monitoring technology[J]. Diabetes Technology & Therapeutics, 2005,7 (5) : 770-775.
  • 2BURDICK J, CHASE P, FAUPEL M, et al.. Real-time glucose sensing using transdermal fluid under continuous vacuum pressure in children with type 1 diabetes [J]. Diabetes Technology & Therapeutics, 2005, 7(3):448-455.
  • 3MARUO K, TSURUGI M, TAMURA M, etal.. In vivo noninvasive measurement of blood glucose by near-infrared diffuse-reflectance spectroscopy [J]. Appl. Spectrosc. ,2003, 57(10) :1236-1244.
  • 4KAMHOLZ A E, WEIGL B H, FINLAYSON B A, et al.. Quantitative analysis of molecular interaction in a microfluidic channel: The T-sensor [J]. Analytical Chemistry, 1999,71(23) :5340-5347.
  • 5KAMHOLZ A E, YAGER P. Theoretical analysis of molecular diffusion in pressure-driven laminar flow in microfluidie channels [J]. Biophysical Journal ,2001,80(1) :155-160.
  • 6MUNTZ E P, SHIFLETT G R, VARGO S E. Microscale thermal-transpiration gas pump[J]. NASA Tech. Brief, 2003, 27(2) :72-73.
  • 7KOOPS H, Proposal of a miniaturized orbitron pump for MEMS applications[J]. SPIE, 2005, 5838 : 38- 42.
  • 8KOO K, JEONG M, PARK S, et al.. Novel valve- less micro suction pump using a solid chemical propellant[J]. IFMBE Proceedings, 2006, 14 (1) : 310-313.
  • 9KOO K, PARK S, BAN J, et al.. A novel fluid suction tool for capsular endoscope[C]. Transducers Eurosensors'07, the 14th International Confer- ence on Solid-State Sensors, Actuators and Microsystems, 2007, 1:1335-1336.
  • 10MUKERJEE E V, WALLACE A P, YAN K Y, et al.. Vaporizing liquid microthruster[J]. Sens.Actuators, 2000, 83:231-236.

同被引文献15

  • 1Manz A,Harrison D J.Plannar chips technology for miniaturization and integration of separation techniques into monitoring systems:capillary electrophoresisonachip[J].Journal Chromatography,1992(4):253-258.
  • 2Vasiliy N,Natalya V,Antje J.Electrochemical microfluidic biosensor for the detection of nucleic acid sequences[J].Lab Chip,2006(6):414-421.
  • 3Thomas M L,Maria C C,I-Ming H.Microfabricated PCR-electrochemical device for simultaneous DNA amplification and detection[J].Lab Chip,2003(3):100-105.
  • 4Larry J,Paolo F,Nicholas J et al..Fabrication of plastic microchips by hot embossing[J].Lab Chip,2002(2):1-4.
  • 5Liu J S,Qiao H C,Xu Z.Fabrication of planar nanofluidic channels in thermoplastic polymers by O2 plasma etching[J].Micro & Nano Letters,2012(7):159-162.
  • 6Liu J S,Qiao H C,Liu C.Plasma assisted thermal bonding for PMMA microfluidic chips with integrated metal microelectrodes[J].Sensors Actuators B,2009(141):646-651.
  • 7Li J M,Liu C,Qiao H C.P Hot embossing/bonding of a poly(ethylene terephthalate) (PET) microfluidic chip[J].Journal Micromechanics and Microengineering,2008(18):1-10.
  • 8Ueno K,Kim H,Kitamura N.Characteristic Electrochemical Responses of Polymer Microchannel-Microelectrode Chips[J].Anal.Chem.,2003,75(9):2086-2091.
  • 9罗怡,王晓东,刘军山.沉陷铜电极电化学微流控芯片的制备方法:中国,ZL200410082842.2[P].2004.
  • 10钟群鹏,赵子华.断口学-中国工程院院士文库[M].北京:高等教育出版社,2006.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部