期刊文献+

无定形碳掺杂对MgB_2/Nb/Cu线材超导电性的影响(英文) 被引量:3

Influence of Amorphous Carbon Doping on Superconductivity of MgB_2/Nb/Cu Wires
原文传递
导出
摘要 采用原位法粉末装管工艺(in-situ PIT)制备了无定形碳掺杂MgB2/Nb/Cu超导线材并研究了该掺杂对MgB2微观结构及超导电性的影响。复合线材中以Nb作为阻隔层、Cu作为稳定体并采用冷拉拔工艺进行加工。研究了无定形碳掺杂对MgB2相形成、微观结构及超导电性的影响,其中掺杂量分别为MgB2-xCx(x=0.0,0.05,0.08,0.10,0.15)。分别采用XRD、SQUID、SEM/EDS及传输电流测试等方法对MgB2/Nb/Cu线材进行分析测试。XRD分析结果显示,700oC热处理后的线材可以获得纯度较高的MgB2超导相;微观结果照片显示无定形碳掺杂后可以获得良好的晶粒连接性;能谱分析表明掺杂物C元素均匀的分布在MgB2基体中;通过四引线法测试了传输临界电流密度Jc,在4.2K、5T,其Jc值高达1.4×105A/cm2;在4.2K、10T,其Jc值为3.3×104A/cm2。 The effects of amorphous carbon doping on superconducting properties of MgB2/Nb/Cu wires fabricated by the in-situ powder-in-tube(PIT) method have been investigated.Using Nb as the barrier and Cu as the stabilizer,the MgB2 wires were fabricated by cold drawing.The wires of MgB2-xCx(x = 0.0,0.05,0.08,0.10,0.15) have been investigated to realize the effect of amorphous carbon doping on the phase formation,microstructure and superconducting properties.Characterization of MgB2 /Nb/Cu wires was carried out using XRD,SQUID,SEM/EDS,and I c measurements.XRD result shows that the high purity MgB2 phase is acquired after heat-treatment at 700℃.The microstructure observation for wires shows that the MgB2 /Nb/Cu wires have better grain connectivity after doping amorphous carbon,and Energy Dispersive X-ray(EDS) analysis confirms the uniform distribution of carbon in the MgB 2 superconducting phase.The critical current density(J c) of wires was measured in different magnetic fields by a standard four probes method,and the transport J c values as high as 1.4 × 10 5 A/cm 2(4.2 K,5 T) and 3.3× 104 A/cm 2(4.2 K,10 T) have been achieved.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2012年第10期1709-1712,共4页 Rare Metal Materials and Engineering
基金 Nature Science Foundation of China(50877067) National Basic Research Program of China(2011CBA00104)
关键词 MgB2/Nb/Cu超导线材 无定形碳掺杂 超导电性 MgB2/NbCu wires amorphous carbon doping superconductivity
  • 相关文献

参考文献10

  • 1Nagamatsu J, Nakagawa N, Muranaka T et al. Nature[J]. 2001, 410:63.
  • 2Larbalestier D C, Cooley L D, Rikel M O et al. Nature[J]. 2001, 410:186.
  • 3Matsumoto A, Kumakura H, Kitaguchi H et al. 1EEE Trans Appl Supercond[J]. 2005, 15(2): 3333.
  • 4Dou S X, Yeoh W K, Shcherbakova O et al. Appl Phys Lett[J]. 2006, 89:20 2504.
  • 5Fang H, Alessandrini M, Wang X Met al. IEEE Trans Appl Supercond [J]. 2009, 19(3): 3520.
  • 6Ojha N, Malik V K, Rashmi Singla et al. Supercond Sci Technol [J]. 2010, 23:045 005.
  • 7Cheng C H, Yang Y, Ke C et al. Physica C [J]. 2010, 470: 1092.
  • 8Zhang X P, Wang D L, Gao Z S et al. Supercond Sci Technol [J]. 2010, 23:025 024.
  • 9Lee C M, Park J H, Hwang S Met al. Physica C [J]. 2009, 469:1527.
  • 10Lim J H, Kim K T, Park E C et al. Phyica C [J]. 2008, 468: 1379.

同被引文献11

  • 1Nagamatsu J, Nakagawa N, Muranaka T et al. Nature[J], 2001, 410:63.
  • 2Liu A Y, Mazin I I, Kortus Jet al. Phys Rev Lett[J], 2001, 87(8): 087 005.
  • 3Liu Guoqing(刘国庆),Sun Yuyan(孙昱艳),Wang Qinhyang(王庆阳)et al.稀有金属材料与工程[J],2013,42(2):398.
  • 4Wang Qinhyang(王庆阳),Zhang Pingxiang(张平祥),YanGuo(闰果)et al.稀有金属材料与工程[J],2013,42(5):0881.
  • 5Liu K, Zhou X L, Chen X R et al. Physica B[J], 2007, 388(1-2) 213.
  • 6Martin K. Mater Sci andEngA[J], 2004, 375-377:120.
  • 7Yong H L, Sheng Y, Zhi M G et al. JMaterRes[J], 1988, 13(7) 1750.
  • 8Friedriehs O, Kim J W, Remh Aet al. Chem Phys[J], 2009, 11 : 1515.
  • 9Jonas F, Anders E W, Talaat E Bet al. Mater Des[J], 2001, 22: 443.
  • 10闫果,王庆阳,刘国庆,杨欢,李成山,卢亚锋,闻海虎.粉末套管法制备碳掺杂MgB2线材及其超导电性[J].科技导报,2008,26(1):28-31. 被引量:1

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部