摘要
The vibration stability and the active control of the parametrically excited nonlinear beam structures are studied by using the piezoelectric material. The velocity feedback control algorithm is used to obtain the active damping. The cubic aonlineax equation of motion with damping is established by employing Hamilton's principle. The multiple-scale method is used to solve the equation of motion, and the stable region is obtained. The effects of the control gain and the amplitude of the external force on the stable region and the amplitude-frequency curve axe analyzed numerically. From the numerical results, it is seen that, with the increase in the feedback control gain, the axial force, to which the structure can be subjected, is increased, and in a certain scope, the structural active damping ratio is also increased. With the increase in the control gain, the response amplitude decreases gradually, but the required control voltage exists a peak value.
The vibration stability and the active control of the parametrically excited nonlinear beam structures are studied by using the piezoelectric material. The velocity feedback control algorithm is used to obtain the active damping. The cubic aonlineax equation of motion with damping is established by employing Hamilton's principle. The multiple-scale method is used to solve the equation of motion, and the stable region is obtained. The effects of the control gain and the amplitude of the external force on the stable region and the amplitude-frequency curve axe analyzed numerically. From the numerical results, it is seen that, with the increase in the feedback control gain, the axial force, to which the structure can be subjected, is increased, and in a certain scope, the structural active damping ratio is also increased. With the increase in the control gain, the response amplitude decreases gradually, but the required control voltage exists a peak value.
基金
Project supported by the National Natural Science Foundation of China (Nos. 11172084, 10672017,and 50935002)