期刊文献+

具有时滞和分段常数变量的食物有限模型的稳定性与分支分析(英文)

Stabilityand bifurcation analysis of the food-limited model with time delay and piecewise constant variables
下载PDF
导出
摘要 讨论了具有时滞和分段常数变量的食物有限模型的局部稳定性以及翻转分支和Neimark-Sacker分支.利用分段常数理论、中心流行定理以及分支理论得到翻转分支和Neimark-Sacker分支稳定的充分条件.通过举例和数值模拟验证了所得结论的正确性与可行性,并充分体现了该单种群生物系统复杂的动力学行为. The stability,flip bifurcation and Neimark-Sacker bifurcation of a discrete-time single population model with food-limited and time delay are investigated in this paper.The sufficient conditions for existence and stability of bifurcation are derived by using piecewise constant arguments,center manifold theorem and bifurcation theory.Numerical simulations are presented not only to illustrate our results with the theoretical analysis,but also to exhibit the complex dynamical behaviors.
出处 《纺织高校基础科学学报》 CAS 2012年第3期268-278,共11页 Basic Sciences Journal of Textile Universities
基金 Supported by the National Natural Foundation of China(10871122 11171119)
关键词 局部稳定性 分段常数变量 翻转分支 Neimark-Sacker分支 local stability piecewise constant variables flip bifurcation Neimark-Sacker bifurcation
  • 相关文献

参考文献11

  • 1CUI Q,LAWSON G J. Study on models of single population: an expansion of the logistic and exponential equations[J]. J Theoret Biol, 1982,98 (4) : 645-659.
  • 2SMITH F E. Population dynamics in Daphnia magna a new model for population growth[J]. Ecology, 1963,44(4) : 651- 663.
  • 3GOPALSAMY K. Stability and oscillation in delay difference equations of population dynamics[M]. Dodrecht: Kluwer Academic Publishers, 1992.
  • 4MAY R M. Biological population obeying difference equations: stable points, stable cycles and chaos[J]. J Theoret Biol,1975,51(2):511-524.
  • 5MAY R M, OSTER G F. Bifurcations and dynamics complexity in simple ecological models[J]. Am Nat, 1976, 110 (974): 573-579.
  • 6张梅荣,陈斯养.一类具有时滞和干扰的单种群生态模型的定性分析[J].纺织高校基础科学学报,2010,23(2):214-220. 被引量:1
  • 7贺云,陈斯养.一类具有时滞的生态模型的Hopf分支[J].纺织高校基础科学学报,2006,19(2):100-104. 被引量:6
  • 8COOKE K L,WIENER J. Retarded differential equations with piecewise constantdelays[J]. Math Anal Appl, 1984,99 (1):265-297.
  • 9AFTABIZADEH A R, WIENER J. Oscillatory properties oflinear functional differential equations[J]. Appl Anal, 1985,20:165-187.
  • 10GYORI I, LADAS G. Linearised oscillations forequations with piecewise constant arguments[J]. Diff and Int Eqns, 1989,2: 123-131.

二级参考文献10

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部