期刊文献+

特殊USAOR迭代法的收敛性研究

Research on the convergence of special iterative method for USAOR
下载PDF
导出
摘要 当线性方程组Ax=b的系数矩阵A为(q,r)=(2,1)相容次序矩阵时,分别讨论当ω2=γ2=1和ω1=γ1=1时,USAOR方法收敛的充分必要条件,并在合理的假设下得到了USAOR方法收敛的最优参数和最优谱半径. With the algebra,the necessary and sufficient condition for the convergence of the USAOR method as ω2=γ2=1 and ω1=γ1=1 are discussed for solving the linear system Ax=b with(q,r)=(2,1) consistently ordered matrix.Finally,the optimum parameter and the most superior spectrum radius are obtained under certain condions.
出处 《纺织高校基础科学学报》 CAS 2012年第3期361-365,共5页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(60671063)
关键词 USAOR迭代法 相容次序矩阵 最优参数 最优谱半径 USAOR iterative method consistently ordered matrix the optimum parameter the most superior spectrum radius
  • 相关文献

参考文献6

  • 1LI Ruiming. Relationship of eigenvalues for USAOR iterative method applied to a class of p-cyclic matrices [J]. Linear Algebra and its Applications, 2003,362: 101-108.
  • 2LI Ruiming,ZHOU Dian. A note on the eigenvalue relationship for USAOR iterative method applied to p-cyclic matrices [J]. Journal of Computational and Applied Mathematics,2004,8(1):213-225.
  • 3BAI Zhongzhi,BERESFORD N Parlett,WANG Zengqi. On generalized successive overrelaxation methods/or augmented linear systems[J]. Numer Math,2005,102:1-38.
  • 4VARGA R S. Matrix iterative analysis[M]. Beijing:Academical Press,2006.
  • 5KUANG J ,JI J. A survey of AOR and TOR methods[J]. Journal of Computational and Applied Mathematics, 1988,11 : 3-12.
  • 6ZHANG Y. Forward and Backward AOR method for iterative solution of linear systems[J]. Numerical Mathematics, 1987,9(4) :354-366.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部