期刊文献+

一种自适应交替的粒子群差分进化优化算法 被引量:4

A self-adaptive alternating optimization algorithm based on particle swarm optimization and differential evolution
下载PDF
导出
摘要 为了克服粒子群算法易陷入早熟收敛的缺点及提高差分进化算法的搜索能力,提出了一种自适应交替的粒子群差分进化算法.该算法采用自适应的概率交替使用PSO和DE,通过对6个基准函数的测试,说明本文提出的算法是一种收敛速度快、求解精度高的全局优化算法. To overcome particle swarm optimization algorithm′s premature convergence and improve the search ability of differential evolution,a hybrid optimization algorithm PSO-DE was proposed.This algorithm alternately used PSO and DE by a self-adaptive probability.Six benchmark functions are used in the test,and the experimental results show that PSO-DE is a powerful global optimization algorithm with rapid converence speed and higher accuracy.
出处 《纺织高校基础科学学报》 CAS 2012年第3期379-383,共5页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(10902062) 中央高校基本科研业务费专项基金资助项目(GK201001002)
关键词 粒子群算法 差分进化算法 基准函数 全局优化 particle swarm optimization differential evolution benchmark functions global optimization
  • 相关文献

参考文献13

  • 1KENNEDY J, EBERHART R. Particle swarm optimization[C]. Proceeding of IEEE International Conference on Neural Networks. Piscataway:IEEE Service Center, 1995 : 1 942-1 948.
  • 2EBERHART R,KENNEDY J. A new optimizer using particle swarm theory[C]. Proceeding of the International Symposium on Micro Machine and Human Science, Nagoya, 1995 : 39-43.
  • 3RATNAWEERA A, HALGAMUGE S K. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transaction on Evolutionary Compution, 2004,8 (3):240-255.
  • 4戴运桃,赵希人,刘利强.基于进化粒子群优化的非线性系统辨识[J].计算机仿真,2010,27(10):179-182. 被引量:4
  • 5Van Den BERGH F, ENGELBRECHT A P. Cooperative learning in neural networks using particle swarm optimizers [J]. South Afriean Computer Journal, 2000 (26) : 84-90.
  • 6STORN R,RRICE K V. Differential evolution-A simple and efficient heuristic for global optimization over continuous space[J]. Journal of Global Optimization, 1997,11(4) : 341-359.
  • 7周喜虎,高兴宝.具有时间因子的粒子群优化算法[J].纺织高校基础科学学报,2011,24(2):303-308. 被引量:7
  • 8闫元元,高兴宝.一种改进的粒子群算法[J].纺织高校基础科学学报,2011,24(3):428-431. 被引量:4
  • 9SHI Y H, EBERHART R C. A modified particle swarm optimizer[C]. Proceedings of IEEE International Conference on Evolutionary Computation. Piscataway: IEEE Press, 1998: 69-73.
  • 10QIN A K, SUGANTHAN P N. Self-adaptive differential evolution algorithm for numerical optimization[C]. IEEE Congress on Evolutionary Compution, 2005 : 1 785-1 791.

二级参考文献33

共引文献10

同被引文献45

  • 1吴亮红,王耀南,袁小芳,周少武.自适应二次变异差分进化算法[J].控制与决策,2006,21(8):898-902. 被引量:80
  • 2韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报,2006,18(10):2969-2971. 被引量:122
  • 3胡中波,熊盛武,胡付高,苏清华.改进的差分演化算法及其在函数优化中的应用[J].武汉理工大学学报,2007,29(4):125-128. 被引量:11
  • 4KEVIN M P. Biomimicry of bacterial foraging for distributed opti-mization and control[J].IEEE Control Systems Magazine,2002.52-67.
  • 5DASGUPTA A,DASGUPUTA S,DAS S. A synergy of differential evolution and bacterial foraging optimization.for global optimization[J].Neural Network Word,2007,(06):607-626.
  • 6KIM D H,ABRAHAM A,CHO J H. A hybrid genetic algorithm and bacterial foraging approach[J].Information Sciences,2007,(18):3918-3937.
  • 7BISWAS A,DASGUPTA S,DAS S. Synergy of PSO and bacterial foraging op-timization:A comparative study on numerical benchmarks[A].Salamanca,2007.255-263.
  • 8LIU Y,PASSINO K M,POLYCARPOU M. Stability analysis of m-dimensiona asynchronous swarms with a fixed communication topology[J].IEEE Transactions on Automatic Control,2003,(01):76-95.
  • 9DATTA T,MISRA I S,MANGARAJ B B. Improved adaptive bacteria foraging algorithm in optimization ofantenna array for faster convergence[J].Progress in Electromagnetics Research C,2008,(01):143-157.
  • 10CHEN H;ZHU Y;HU K.Self-adaptation in bacterial foraging optimization algorithm[A]福建厦门,20081026-1031.

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部