期刊文献+

系数矩阵含参数分裂形式的SOR迭代法收敛性分析

Convergence analysis of the SOR iterative method in coefficient matrix splitting with parameters
下载PDF
导出
摘要 给出预条件方后线性方程组的系数矩阵的一类含参数的分裂形式,使系数矩阵的分裂更加一般化,同时讨论在该形式下的SOR迭代法的收敛性,并与一般的预条件方法进行比较分析,说明这种方法收敛性更好,最后找到参数的最优选取. This paper studies the linear system coefficient matrix splitting with parameters in the preconditioned,and make the matrix splitting more general.Then discuss convergence of the SOR iterative method in this matrix splitting with parameters,and compare with the general preconditioned iterative method,explain this method is better,gives the parameter optimal selection.
作者 王慧勤
出处 《陕西科技大学学报(自然科学版)》 2012年第5期135-138,共4页 Journal of Shaanxi University of Science & Technology
基金 宝鸡文理学院重点基金项目(ZK10110)
关键词 预条件 收敛性 SOR迭代法 谱半径 矩阵分裂 precondition convergence the SOR iteration method spectral radius matrix splitting
  • 相关文献

参考文献6

  • 1Ting Zhu Huang, Guang Hui Cheng, Xiao-Yu Cheng. Modified SOR-type iterative method for Z-matrices[J]. Applied Mathematics and Computation, 2006, 175 (2): 258-268.
  • 2Hiroshi Niki, Kyouji Harada, Munenori Morimoto. The survey of preconditioners used for accelerating the rate of convergence in the gauss seidel method[J]. Journal of Computational and Applied Mathematics, 2004, 165 ( 3 ): 587-600.
  • 3Jae Heon Yun. A note on the modified SOR method for z- matrices[J]. Applied Mathematics and Computation, ~007,194(3) :572-576.
  • 4David M. Yong. Iterative solution of large linear systems LM]. New York :Academic Press, 1971.
  • 5Richard S. Varga. Matrix iterative analysis[M]. Spring- Verlag Heidelberg, 2000.
  • 6雷刚.预条件(I+S)后改进矩阵分裂的SOR迭代法收敛性分析[J].宝鸡文理学院学报(自然科学版),2011,31(3):13-17. 被引量:3

二级参考文献11

  • 1Ananda D Gunawardena, S K Jain, Larry Snyder. Modified iterative method for consistent linear systems[J]. Linear Algebra and its Applications, 1991,154-156: 123-143.
  • 2LIU Qing-bing, CHEN Guo-ling, CAI Jing. Convergence analysis of the preconditioned Gauss-Seidel method for H-matrices[J]. Computers & Mathematics with Applications, 2008, 56(8): 2048-2053.
  • 3Jae Heon Yun. Convergence of SSOR multisplitting method for an H-matrix [J]. Journal of Computational and Applied Mathematics, 2008, 217(1): 252-258.
  • 4Jae Heon Yun. A note on the modified SOR method for Z-matriees[J]. Applied Mathematics and Computation, 2007, 194: 572-576.
  • 5DAVID M Yong. Iterative solution of large linear systems[M]. New York:Academic Press, 1971.
  • 6Richard S Varga. Matrix iterative analysis[M]. Heidelberg:Spring-Verlag, 2000.
  • 7WANG Zhuan-de, HUANG Ting-zhu. Comparison result between Jacobi and other iterative methods[J]. Journal of Computational and Applied Mathematics, 2004, 169(1) : 45-51.
  • 8LI Wen. Comparison results for solving preconditioned linear systems[J]. Journal of Computational and Applied Mathematics, 2005,176(2) : 319-329.
  • 9WANG Xue-zhong, HUANG Ting-zhu, FU Ying-ding. Comparison results on preconditioned SOR-type iterative method for Z-matrices linear systems[J]. Journal of Computational and Applied Mathematics, 2007, 206 (2): 726-732.
  • 10CAO Zhi--hao, WU He-bing, LIU Zhong-yun. A note on weak splitting of matrices[J]. Applied Mathematics and Computation, 2000,112(2/3) : 265-275.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部