期刊文献+

基于经验模态分解与RBF神经网络的混合预测 被引量:6

Hybrid Prediction Method Based on Empirical Mode Decomposition and RBF Neural Network
下载PDF
导出
摘要 为提高时间序列预测模型精度,根据各本征模态函数(intrinsic mode function,简称IMF)序列的变化特点,针对EMD-RBF神经网络隐含神经元数目及其中心数据选取问题,利用经验模态分解(empirical mode decomposition,简称EMD)的信号自适应处理能力和径向基函数(radical basis function,简称RBF)神经网络的非线性逼近能力,提出了一种基于EMD与RBF神经网络的混合预测方法。该方法将具有类似时频特性的本征模态函数分别建立RBF神经网络预测模型,采用基于统计分析的k-均值聚类方法自适应确定RBF模型参数,最后将各IMF-RBF神经网络预测结果进行重构得到最终预测结果。仿真结果表明,该方法充分考虑到各IMF本身的特性,增强了时序的可预测性,预测性能比传统反向传播(back propagation,简称BP)神经网络和小波BP神经网络更优越。将该方法应用在某装备温控系统性能监测中,其温度参数最大预测误差远小于传感器误差,说明将该方法在该装备故障预测中是可行的。 In order to advance prediction model precision of time sequence, according to the variety characteristics of the IMF(Intrinsic Mode Function), for EMD-RBF neural network’s number of hidden neurons and data selection, a new method is presented by using self-adaptive processing capability of EMD(Empirical Mode Decomposition) and nonlinear approaching capability of RBF(Radical Basis Function) neural network. First of all, RBF neural network prediction model is established from IMF with similar time-frequency characteristics, which adopts k-means clustering method based on statistical analysis to make RBF model parameters. Finally, the prediction results of IMF-RBF neural network are restructured to obtain the last prediction result simulation. Simulation results show that this approach enhance the predictability of time sequence, considering the characteristic of IMF itself. The prediction performance is better than traditional BP neural network and wavelet BP neural network. The method is applied to monitoring equip temperature control system, in which the maximum prediction error of temperature parameter is much less than the sensor error. Hence, this study is feasible in equipment fault prediction.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2012年第5期817-822,866,共6页 Journal of Vibration,Measurement & Diagnosis
基金 学院创新性基础研究基金资助项目(编号:XY2009JJB33)
关键词 经验模态分解 径向基函数神经网络 预测 模态混叠 empirical mode decomposition,radical basis function (RBF) neural network,prediction,mode mixing
  • 相关文献

参考文献11

  • 1Moghram I,Rahman S. Analysis and evaluation offive short-term load forecasting techniques [J]. IEEETranson Power Systems, 1989,14(4) : 1484-1491.
  • 2Huang S J, Shih K R. Short-term load forecasting ViaARMA model identification including non-gaussianprocess considerations[J]. IEEE Transon Power Systems ,2003,18(2):673-679.
  • 3Saini L M,Soni M K. Anificial neural network-basedpeak load forecasting using conjugate gradient methods [J]. IEEE Trans on Power Systems,2002,12 (3):907-912.
  • 4Kim K H,Youn H S,Kang Y C. Short-term loadforecasting for special days in anomalous load condi-tions using neural networks and fuzzy inferencemethod [J]. IEEE Trans on Power Systems, 2000,15(2):559-565.
  • 5Cheng Junsheng, Yu Dejie, Yang Yu. Application ofsupport vector regression machines to the recessing ofend effects of Hilbert-Huang transform [J]. Mechani-cal Systems and Signal Processing, 2007 (21 ) : 1197-1211.
  • 6Teo K K,Wang Lipo, Lin Zhiping. Wavelet packetmulti-layer perceptron for chaotic time series predic-tion: effects of weight initialization [O'] // Proceedingsof International Conference of Computational ScienceICCS 2001. San Francisco : [s. n. ]. 2001 : 310-317.
  • 7Huang N E,Shen Zheng, Long S R,et al. The em-pirical mode decomposition and the Hilbert spectrumfor nonlinear and non-stationary time series analysis[J]. Procedures of the Royal Society of London, Se-ries A, 1998,454:903-995.
  • 8Rilling G,Flandrin P,Goncalves P. On empiricalmode decomposition and its algorithms [C] // IEEE-EURASIP Workshop on Nonlinear Signal and ImageProcessing NSIP-03. Grado, Italy: [s. n. ]. 2003: 8-11.
  • 9盖强,马孝江,张海勇,邹岩崑.几种局域波分解方法的比较研究[J].系统工程与电子技术,2002,24(2):57-59. 被引量:23
  • 10Wu Zhanhua, Huang N E. Ensemble empirical modedecomposition : a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009,1(1): 1-41.

二级参考文献14

  • 1胡劲松,杨世锡,吴昭同,严拱标.基于EMD和HT的旋转机械振动信号时频分析[J].振动.测试与诊断,2004,24(2):106-110. 被引量:48
  • 2刘慧婷,张旻,程家兴.基于多项式拟合算法的EMD端点问题的处理[J].计算机工程与应用,2004,40(16):84-86. 被引量:120
  • 3瞿伟廉,程磊.应用径向基函数神经网络处理EMD方法中的边界问题[J].华中科技大学学报(城市科学版),2006,23(4):1-4. 被引量:23
  • 4Huang N E,Shen Z,Long S R.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society A,1998(454):903-995.
  • 5Han Jianping,Li Dawen,Li Hui.Modal parameter identification of civil engineering structures based on Hilbert-Huang transform[C] //Engineering Structural Integrity:Research,Development and Application.Beijing:China Machine Press,2007:366-368.
  • 6Yang J N,Lei Y,Lin S,et al.Hilbert-Huang based approach for structural damage detection[J].ASCE Journal of Engineering Mechanics,2004,130(1):85-95.
  • 7Rilling G,Flandrin P,Goncalves P.On empirical mode decomposition and its algorithms[C] //IEEE-Eurasip Workshop on Nonlinear Signal and Image Processing.Grado-Trieste:NSIP,2003.
  • 8马孝江 余伯 张志新.一种新的时频分析方法—局域波法[J].振动工程学报,2000,13(5):219-224.
  • 9Huang N E,Shen Z,Long S R.The Empirical Mode Decomposition and the Hilbert Spectrumfor Nonlinear Non-stationary Time Series Analysis[C].Proc.R.Soc.,London,1998,A 454:903-905.
  • 10余波.自适应时频方法及其在故障诊断方法中的应用研究[D].大连理工大学,1998.

共引文献50

同被引文献70

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部