期刊文献+

基于离散余弦变换和主线分块能量的模糊掌纹识别 被引量:13

Blurred palmprint recognition based on DCT and block energy of principal lines
原文传递
导出
摘要 针对非接触式掌纹采集时离焦状态导致的图像模糊问题,提出一种新颖的识别方法。使用离散余弦变换(DCT)在频域内提取低频系数作为稳定特征,使用改进的局部灰度极小值法提取空域内的稳定特征即主线,再使用分块方法计算主线能量形成特征向量,然后将频域和空域内的稳定特征进行融合,最后利用向量之间的欧式距离进行识别。在SUT-D模糊掌纹库上的测试结果表明,与融合之前及其他典型识别方法比较,本文算法识别率最高可达96.057 8%,表明本文方法在识别性能上具备有效性和优越性,为解决模糊掌纹的识别问题提供了一条可行途径。 In view of the problem of blurred image caused by defocus status for non-contact palmprint col lection, a novel recognition approach is proposed. As the stable features, the low frequency coefficients are extracted by discrete cosine transform(DCT) in the frequency domain, and the principal lines are extrac- ted by the improved local gray minimum method in the spatial domain. The block method is used for cal culating principal lines energy to form the feature vectors, then the stable features in the frequency and spatial domains are {used, and finally the Euclidean distance between vectors is used for classification and identification. The experiments based on the SUT-D blurred palmprint database show that compared with no-fusion and other typical identification methods, the proposed algorithm can get recognition rate up to 96. 057 8%, which means that it is an effective and superior approach to solve the problem of blurred palmprint recognition.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2012年第11期2200-2206,共7页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(60972123) 高等学校博士学科点专项科研基金(20092102110002) 沈阳市科技计划(F10-213-1-00)资助项目
关键词 非接触 模糊 掌纹识别 离散余弦变换(DCT) 主线 non-contact blurl palmprint recognitionl discrete cosine transform (DCT) i principal line
  • 相关文献

参考文献24

  • 1康文雄,陈梓毅,杨清强.A hand vein recognition system based on DSP and CPLD[J].Optoelectronics Letters,2010,6(6):477-480. 被引量:2
  • 2Kong A,Zhang D, Kamel M. A survey of palmprint recognition[J]. Pattern Recognition,2009,41(7) : 1408-1418.
  • 3Kim M K. Palmprint recognition based on line and slope orientation features [J]. Journal of Information Science and Engineering, 2011,27(4) : 1219-1232.
  • 4桑海峰,苑玮琦,张志佳,黄静.基于二维主成分分析的掌纹识别研究[J].仪器仪表学报,2008,29(9):1929-1933. 被引量:24
  • 5郭金玉,苑玮琦.基于二维Fisher线性判别的掌纹识别方法[J].计算机工程,2008,34(6):212-213. 被引量:15
  • 6郭金玉,孔晓光,李元,曾静.基于多线性核主成分分析的掌纹识别[J].光电子.激光,2011,22(2):288-291. 被引量:13
  • 7Michael G K O,Connie T,Teoh A B J. Touch-less palm print biometrics., novel design and implementation[J]. Image and Vision Computing,2008,2,6(12) :]551-1550.
  • 8Wang X,Lei L,Wang M Z. Palmprint verification based on 2D-Gabor wavelet and pulse-coupled neural network[J]. Knowledge-Based Systems, 2012,27;451-455.
  • 9Choras M, Kozik R. Feature extraction method for contactless palmprint biometrics[A]. Proc. of 6th Interna- tional Conference on Intelligent Computing [C]. USA: IEEE, 2010,435-442.
  • 10Choras M,Kozik R. Oontactless palmprint and knuckle biometrics for mobile devices[J]. Pattern Analysis and Applications, 2012,15(1):73-85.

二级参考文献81

共引文献138

同被引文献155

引证文献13

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部