期刊文献+

一类时滞的非局部发散方程的渐近行为

Asymptotic Behavior for a Class of Nonlocal Dispersal Equations with Time Delay
下载PDF
导出
摘要 首先用上、下解和单调迭代的方法研究一般的时滞非局部发散方程解的存在性和渐近行为,然后将这些结论运用到一类时滞的非局部发散方程,并且证明该方程的非负解是唯一的,且解的行为依赖方程中的参数λ,当λ≤λ1(Ω),t→∞时解衰变至零;当λ>λ1(Ω),t→∞时解收敛到唯一正稳定解.另外,还证明了解在一定条件下爆破. The existence and asymptotic behavior of solution for a class of nonlocal dispersal equations with time delay is investigated. By means of super-subsolution method and monotone iteration, the existence and asymptotic behavior of solutions for a general nonlocal dispersal equation with time delay are studied first. Then, these results to equation are applied, which show that the nonnegative solution is unique, and the behavior of this solution depends on parameter A in equation. For λ〉λ1 (Ω), the solution decays to zero as t→∞ ; while for λ〉λ1 (Ω), the solution converges to the unique positive stationary solution as t→∞. In addition, the solution blows up under some conditions is presented.
作者 王宏良 陈莉
机构地区 南通大学理学院
出处 《南通大学学报(自然科学版)》 CAS 2012年第3期66-75,共10页 Journal of Nantong University(Natural Science Edition) 
基金 南通市应用研究计划项目(K2010042)
关键词 时滞 非局部发散 渐近行为 方程 time delay nonlocal dispersal asymptotic behavior equation
  • 相关文献

参考文献19

  • 1Chen Xinfu. Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equations [ J ]. Adv Differential Equations, 1997, 2(1/2) : 125-160.
  • 2Coville J, Dupaigne L. On a nonlocal reaction diffusion equation arising in population dynamics[J]. Proc Roy Soc Edinburgh Sect, 2007, 137A: 1-29.
  • 3Pan Shuxia. Traveling wave fronts of delayed non-local diffusion systems without quasimonotonicity[J]. J Math Anal Appl, 2008, 346(2) :415-424.
  • 4Zhang Guobao, Li Wantong, Lin Guo. Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure[J]. Math Comput Model, 2009, 49(5/6):1021-1029.
  • 5Chasseigne E, Chaves M, Rossi J D. Asymptotic behavior for nonlocal diffusion equations[J]. J Math Pure Appl, 2006, 86 (3) :271-291.
  • 6Cortazar C, Elgueta M, Rossi J D. Nonlocal diffusion problems that approximate the heat equation with Dirichlet boundary conditions[J]. Israel J Math. 2009. 170(1) :53-60.
  • 7Pazoto A F, Rossi J D. Asymptotic behavior for a semilinear nonlocal equation[J]. Asymptot. Anal, 2007, 52(1/2) : 143-155.
  • 8Sattinger D H. Monotone methods in nonlinear elliptic and parabolic boundary value problems[J]. Indiana Univ Math J, 1972, 21(11) :979-1000.
  • 9Hale J K, Verduyn Lunel S M. Introduction to functional differential equations [ M ]. New York:Springer-Verlag, 1993.
  • 10Martin R H, Smith H L. Abstract functional differentia equations and reaction diffusion systems[J]. Trans Amer Math Soc, 1990, 321(1) : 1-44.

二级参考文献8

  • 1赵杰民,黄克累,陆启韶.THE EXISTENCE OF PERIODIC SOLUTIONS FOR A CLASS OF FUNCTIONAL DIFFERENTIAL EQUATIONS AND THEIR APPLICATION[J].Applied Mathematics and Mechanics(English Edition),1994,15(1):49-59. 被引量:4
  • 2Burton T A,Mohfouf W E.Stability criteria for Volterra equations[].Transactions of the American Mathematical Society.1983
  • 3XU Dao_yi.Stability of delayed system with varying coefficients[].Acta Mathematicae Applicatae Sinica.1989
  • 4QIN Yuan_xun,WANG Mu_qiu,WANG Lian.Theory and Application of Movement Stability[]..1981
  • 5PEN Qi_lin.Qualitative analysis for a class of second order nonlinear system[].Journal of Jilin Institute of Chemical Technology (Supplement).
  • 6WANG Lian,WANG Mu_qiu.The Qualitative Analysis of Nonlinear Ordinary Differential Equation[]..1987
  • 7Burton T A.Stability and Periodic Solutions of Ordinary and Functional Differential Equations[]..1985
  • 8Edmund Pinney.Ordinary Difference _Differential Equations[]..1958

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部