期刊文献+

钨粉颗粒级配对氧化铝陶瓷金属化方阻的影响 被引量:9

Effect of tungsten particle size distribution on sheet resistance of alumina ceramic metallization
下载PDF
导出
摘要 选取3种平均粒径分别为0.2、0.5和1μm的钨粉,将任意2种钨粉按一定的质量比混合后与氧化铝陶瓷共烧,得到氧化铝陶瓷的金属化层,研究钨粉颗粒级配对氧化铝陶瓷金属化方阻的影响。结果表明,钨金属化层的方阻与其烧结致密化程度直接相关,钨金属化层越致密,其表面方阻越低。单独使用其中1种粒度的钨粉与氧化铝陶瓷共烧时,金属化方阻较高。将0.5μm和1μm钨粉混合能显著降低方阻,当两者质量比为45:55时得到的金属化方阻最小(12.10 m/□)。混合钨粉的累积分布曲线符合Dinger-Funk粉体堆积公式,分布模数n越接近0.37,其烧结致密化程度越高,金属化方阻越低。 The effect of particle size distribution of tungsten powders on sheet resistance of alumina ceramic metallization was investigated in the present paper.Three kinds of tungsten powder with average particle size of 0.2,0.5 and 1 μm were adopted,two of them were mixed in accordance with an certain mass fraction and co-sintered with alumina ceramic.It is found that the sheet resistance strongly depends on the sintered densification of tungsten metallization.The more dense of the tungsten metallization,the lower sheet resistance can be achieved.Using single particle size of tungsten powder can leads to relatively high sheet resistance.The mixture of 0.5 μm and 1 μm tungsten powders co-sintered with alumina ceramic can reduce the sheet resistance sharply,and the minimum sheet resistance is found to be 12.10 m /□ when the mass ratio of the 0.5 μm and 1μm powder is 45:55,which is lower than that of using single type of tungsten powder.It is also found that the volume cumulative distribution of the mixed tungsten powder fitts the Dinger-Funk equation well.High density and low sheet resistance of tungsten metallization can be obtained when the distribution modulus n is close to 0.37.
出处 《粉末冶金材料科学与工程》 EI 北大核心 2012年第5期579-585,共7页 Materials Science and Engineering of Powder Metallurgy
基金 国家重点基础研究发展规划(973计划资助项目(2006CB605207) 中国博士后科学基金资助项目(11175020) 北京科技大学基本科研业务费资助项目(FRF-TP-12-154A)
关键词 钨金属化 表面方阻 Dinger-Funk公式 颗粒级配 tungsten metallization sheet resistance Dinger-Funk equation particle size distribution
  • 相关文献

参考文献17

  • 1王志刚,乔冠军,高积强,王红洁,金志浩.氧化铝陶瓷的钨金属化研究[J].真空电子技术,2005,18(4):56-58. 被引量:7
  • 2刘征,王洪军,陈新辉,蔡安富,崔颖,张殿祥,高陇桥.氧化铝陶瓷金属化及镍化技术研究[J].真空电子技术,2007,20(3):52-55. 被引量:4
  • 3张巨先.国内外电真空用氧化铝陶瓷金属化层显微结构分析[J].真空电子技术,2003,16(4):24-25. 被引量:13
  • 4BISWAS K, UPADHYAYA G S. Co-sintering of tungsten alloy slurry coated alumina composites and their properties [J]. Materials & Design, 1998, 19(5/6): 231-240.
  • 5OTSUKA K, USAMI T, SEKIHATA M. Interracial bond strength in alumina ceramics metallized and cofired with tungsten [J]. American Ceramic Society Bulletin, 1981, 60(5): 540-545.
  • 6欧阳鸿武,刘咏,王海兵,黄伯云.球形粉末堆积密度的计算方法[J].粉末冶金材料科学与工程,2002,7(2):87-92. 被引量:18
  • 7张荣曾,刘炯天,徐志强,谢华.连续粒度分布的充填效率[J].中国矿业大学学报,2002,31(6):552-556. 被引量:22
  • 8FUMAS C C. Grading aggragates I. Mathematical relations for beds of broken solids of maximum density [J]. Industrial & Engineering Chemistry, 1931, 23(9): 1052-1058.
  • 9SERVAIS C, JONES R, ROBERTS I. The influence of particle size distribution on the processing of food [J]. Journal of Food Engineer, 2002, 51 (3): 201-208.
  • 10HUSKEN G, BROUWERS H J H. A new mix design concept for earth-moist concrete: A theoretical and experimental study [J]. Cement and Concrete Research, 2008, 38(10): 1246-1259.

二级参考文献21

  • 1邹勇明,吴金岭,郑宏宇.钨金属化与氧化铝陶瓷高温共烧[J].真空电子技术,2004,17(4):20-23. 被引量:15
  • 2Fayed M E 卢寿慈等(译).粉体工程手册[M].北京:化学工业出版社,1992..
  • 3宁晓山.PIVシ(ヘ)ラム汇よゐ室化HVI素セラシツクスのうラ接汇关する基础的研究[Z].,1990.76-90.
  • 4[11]Yasuhiro Konakawa, Kozo Ishizaki. The particle size distribution for highest relative density in compacted body. Powder Technology,1990, 63:241 ~246.
  • 5[12]Liu J X, Davies T J. Coordination number-density relationships for random packing of spherical powders. Powder Metallurgy, 1997,40: 48~50.
  • 6[14]Hirschhorn J S. Introduction to powder metallurgy. American Powder Metallurgy Institute, 1969, 82:.
  • 7[1]German M. Powder metallurgy science. Princeton, New Jersey: Metal Powder Industries Federation, 1993.
  • 8[2]German. Randall M. Particle packing characteristics. Princeton, New Jersey: Metal Powder Industries, Federation, 1989.
  • 9[3]Yu A B, Standish N. A study of the packing of particles with a mixture size distribution. Powder Technology, 1993 , 76: 113 ~ 124.
  • 10[4]Scott G D. Packing of equal sphere. Nature, 1960, 188: 908- 909.

共引文献59

同被引文献106

引证文献9

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部