期刊文献+

基于人工神经网络和粒子群算法的风能预测模型 被引量:3

A prediction model for wind farm power generation based on neural network and particle swarm optimization
下载PDF
导出
摘要 作为一种可再生清洁能源,风能被认为是电力系统中重要的替代发电能源。随着越来越多的风力发电机接入电网,风能预测变得越来越重要。文章应用人工神经网络提出了一种短期风能预测模型,并应用粒子群算法来优化其参数。模型采用实际风电场的数据进行了实例验证,并将其结果与无参数优化的人工神经网络模型进行了比较。 As a renewable energy source, wind turbine generators are considered to be important generation alternatives in electric power systems because of their non-exhaustible nature. As wind power penetration increases, power forecasting is crucially important for integrating wind power in a conventional power grid. A short-term wind farm power output prediction model is presented using a neural network optimized by particle swarm optimization a^gofithm. Using wind data from an existed wind farm, a power forecasting map is illustrated, and a comparison of models based on a Back-Propagation (BP) neural network and a PSO-BP neural network is undertaken.
出处 《微计算机信息》 2012年第10期148-149,277,共3页 Control & Automation
关键词 可再生能源 预测 人工神经网络 粒子群优化 Renewable energy prediction Artificial Neural Network Particle Swarm Optimization
  • 相关文献

参考文献17

  • 1KangJinsong, Zhang Zhiwen, Lang Yongqiang. Developmentand trend of wind power in China 2007 IEEE Canada ElectricalPower Conference [C].EPC 2007 2007: 330-335.
  • 2可再生能源中长期发展规划[D].2007中华人民共和国国务院.
  • 3NegnevitskyM, Potter C W. Innovative Short -Term WindGeneration Prediction Techniques [C].Power Systems Conferenceand Exposition. 2006: 60-65.
  • 4TaniquchiKenqo, Ichiyanaqi Katsuhiro, Yukita Kazuto, GotoYasuyuki. Study on forecast of time series of wind velocity for windpower generation by using wide meteorological data [J].IEEJTransactions on Power and Energy. 2008 128-2: 416-422.
  • 5J.L. Torres, A. Garcia,M. De Bias,A. De Francisco. Forecast ofhourly average wind speed with ARMA models in Navarre (Spain)[J].Solar Energy. 2005 79-1: 65-77.
  • 6P.Louka, G. Galanis, N. Siebert, G. Kariniotakis, P. Katsafados,I. Pytharoulis and G. Kallos. Improvements in wind speed forecastsfor wind power prediction purposes using Kalman filtering [J].Journal of Wind Engineering and Industrial Aerodynamics, 200896-12: 2348-2362.
  • 7Fonseca,Inacio, Farinha, Torres, Barbosa, Fernando Maciel.On -condition maintenance of wind generators -From predictionalgorithms to hardware for data acquisition and transmission [J].WSEAS Transactions on Circuits and Systems. 2008 7-9: 909-918.
  • 8CarolinMabel, M Fernandez E. Analysis of wind powergeneration and prediction using ANN: A case study [J].RenewableEnergy. 2008 33-5: 986-992.
  • 9CM Bishop. Neural Networks for Pattern Recognition [D].Oxford University Press. 1995.
  • 10J.F. Walker and N. Jenkins. Wind Energy Technology [D].John Wiley & Sons. 1997.

二级参考文献5

共引文献9

同被引文献22

  • 1李洪涛.人工神经网络和模糊技术在风能预测中的应用[J].中国电力,2012,45(8):69-73. 被引量:10
  • 2陈垣毅,郑增威,霍梅梅,赵波.风能发电预测技术研究的现状与发展[J].能源工程,2012,32(6):18-22. 被引量:6
  • 3Li HZ,Guo S,Li CJ,Sun JQ. A hybrid annual power loadforecasting model based on generalized regression neuralnetwork with fruit fly optimization algorithm[J]. Knowl.edge-Based Systems,2013,37:378-387.
  • 4Theodosiou M.Disaggregation & aggregation of time seriescomponents: A hybrid forecasting approach using general.ized regression neural networks and the theta method[J].Neurocomputing,2011,74(6):896-905.
  • 5Poncela M,Poncela P,Perán J R. Automatic tuning of Kal.man filters by maximumlikelihood methods for wind ener.gy forecasting[J]. Applied Energy,2013,108:349-362.
  • 6Haidar A,Mustafa M W,Ibrahim F A,Ahmed I A. Tran.sient stability evaluation of electrical power system usinggeneralized regression neural networks[J]. Applied SoftComputing,2011,11(4):3558-3570.
  • 7Akp-nar,Adem. Evaluation of wind energy potentiality atcoastal locations along the north eastern coasts of Turkey.Energy,2013,50: 395-405.
  • 8Fadare,D. A. The application of artificial neural networksto mapping of wind speed profile for energy application inNigeria.Applied Energy,2010,87(3):934-942.
  • 9Theodosiou,Marina. Disaggregation & aggregation of timeseries components: A hybrid forecasting approach usinggeneralized regression neural networks and the theta meth-od.Neurocomputing,2011,74(6): 896-905.
  • 10Zhou C,L Y Ding,R He.PSO-based Elman neural net-work model for predictive control of air chamber pressurein slurry shield tunneling under Yangtze River.Automa-tion in Construction,2013,36: 208-217.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部