期刊文献+

基于光流的运动目标检测跟踪快速算法 被引量:1

The Fast Algorithm Based on Optical Flow for Tracking Moving Targets
下载PDF
导出
摘要 采用光流算法对运动目标进行识别跟踪,其优点是能够适应复杂的背景条件,并且能保证目标分割的完整性,但现有的按照光流矢量对目标进行跟踪的算法有明显的局限性:运算量过大,并且不适用与运动特征复杂的目标。对现有算法进行改进,采用均值平滑算法和基于光流绝对值的区域分割算法,可以有效解决这两个问题。 Using optical flow algorithm for identification and tracking moving targets, the advantage is the ability to adapt to the com- plex background conditions, and can ensure the integrity of the target partition, but the existing target tracking algorithm based on op- tical flow vector has obvious limitations: excessive operation, and does not apply and movement characteristics of complex targets. Im- provements to existing algorithms, using the pyramid optical flow-based smoothing algorithm and the absolute value of the region seg- mentation algorithm can effectively solve these two problems.
出处 《微计算机信息》 2012年第10期421-423,共3页 Control & Automation
关键词 光流 运动目标 图像分割 Key word: Optical flow Kinetic target Image segmentation
  • 相关文献

参考文献7

  • 1张会军.基于图像的动目标检测技术[J].微计算机信息,2007,23(22):299-300. 被引量:7
  • 2陈小林,夕赵建,王延杰,多模实时跟踪算法研究[J].仪器仪表学报,2009年6月,第6期增刊:204-208.
  • 3杨国亮,王志良,牟世堂.一种改进的光流算法人工智能及识别技术.2006;32(15):187-189.
  • 4A div G, Determ iningthree dim ension m otion and structure from opti calflow generated by severalm oving objects, IEEEE Transaction on Pattern AnalysisandM achineIntelligence,1985;7(4): 384 -401.
  • 5章毓晋.图像理解[M].清华大学出版社.2007,2.103-107.
  • 6Horn B K P, Schunck B G. 1981. Determining optical flow. Artificial Intelligence, 17:185-203.
  • 7Jain A K. 1989. Fundamentals of Digital Image Processing. Prentice-Hall.

二级参考文献3

  • 1B.K.P.Hom,B.G.Schunck , "Determining Optical flow", Artificial Intelligence, August,1981,185-203
  • 2John W.Tukey.Frederick Mosterller,David C.Hoaglin, "Understanding robust and exploratory data analysis",John Wiley&Sons
  • 3John W.Tukey.Frederick Mosterller,David C.Hoaglin,陈忠琏,郭德媛译.《探索性数据分析》,中国统计出版社,1998.357-384

共引文献7

同被引文献13

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部