期刊文献+

基于视觉注意机制的交通路标检测方法 被引量:2

Approach to waymark detection based on visual attention mechanism
下载PDF
导出
摘要 提出一种基于视觉注意机制的交通路标检测方法,该方法在图像灰度变换的基础上,引入自下而上的视觉注意模型,提取图像的初级特征,构造相应的显著图,根据总显著图,检测出图像中的显著区域,定位路标在图像中的位置。对多幅实时路况图像的实验结果表明,该方法能够适应户外自然环境检测,具有较高的准确性和实时性。 This paper proposed a new approach to waymark detection based on visual attention mechanism.This approach introduced the bottom-up human visual attention model after the image grey scale transformation,extracted low-level features of the image and constructed the saliency map.According to the whole saliency map,it detected the salient regions in an image,fixed the location of waymark in an image.The experimental results on multiple real-time traffic images demonstrate this approach can adapt to the test in an outdoor natural environment and be of high accuracy and real-time.
出处 《计算机应用研究》 CSCD 北大核心 2012年第10期3960-3963,3975,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(60835005)
关键词 视觉注意 灰度变换 路标检测 visual attention grey transformation waymark detection
  • 相关文献

参考文献9

  • 1曾志宏,李建洋,郑汉垣.融合深度信息的视觉注意计算模型[J].计算机工程,2010,36(20):200-202. 被引量:11
  • 2丁正虎,余映,王斌,张立明.选择性视觉注意机制下的多光谱图像舰船检测[J].计算机辅助设计与图形学学报,2011,23(3):419-425. 被引量:18
  • 3曾孝平,陈礼,刘国金,谢春兰,朱斌.视觉注意的图像目标预检测[J].重庆大学学报(自然科学版),2009,32(6):691-696. 被引量:2
  • 4GONZALEZ C, RICHARD E. Digital image processing[ M]. 2nd ed. Beijing:Publishing House of Electronics Industry,2003.
  • 5TREISMAN A, GELADE G. A feature-integration theory of attention [ J ]. Cognitive Psychology, 1980,12 ( 1 ) :97-136.
  • 6ITrI L, KOCH C. Computational modeling of visualattention [ J ]. Na- turere Reviews Neuroscienee,2001,2(3):194-230.
  • 7ITYI L, KOCH C, NIEBUR E. A model of saliency-based visual atten- tion for rapid scene analysis[ J]. IEEE "lrans on Pattern Analysis and Machine Intelligence, 1998,20 ( 11 ) : 1254-1259.
  • 8POSNER M I, COHEN Y. Components of visual orienting[ M ]//BOU- NA H, BOUWHUIS D C. Attention and Performance. Hillsdale, N J: Erlbaum, 1984:531-536.
  • 9http ://www. saliency-toolbox, net [ EB/OL ].

二级参考文献46

  • 1ITTI L, KOCH C. Computational modelling of visual attention[J]. Nature Reviews Neuroscience, 2001, 2(3) :194-202.
  • 2KOCH C, ULLAMAN S. Shifts in selective visual attention: towards the underlying neural cireuitry[J]. Human Neurobiology, 1985, 4(4) :219-227.
  • 3ITTI L,KOCH C, NIEBUR E. A model of saliency- based visual-attention for rapid scene analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20(11) : 1254-1259.
  • 4ITTI L,KOCH C. A saliency-based search mechanism for overt and covert shifts of visual attention [J]. Vision Research, 2000, 40(10/12): 1489-1506.
  • 5KATO R, TAKAURA K, ISA T, et al. Saliency based guidance of spontaneous saccades in monkeys with unilateral lesion of primary visual cortex[C/OL]// Society for Neuroscience Annual Meeting (SFN'07), Nov 2007, Los Angeles CA, USA. Los Angeles CA: [s. n.], 2007. http: // sns. ibr. neuroinf. jp/moclules/xoonips/detail, php? item id = 17882&ml_lang = en-28k
  • 6SIAGIAN C, ITTI L. Biologically-inspired robotics vision monte-carlo localization in the outdoor environment[C/OL]// IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct 2007, San Diego, CA, USA: [s. n. ], 2007. http: // www. citeulike. org/user/ sylvain_chevallier/ article/ 3199748.
  • 7EINHAEUSER W, MUNDHENK T N, BALDI P, et al. A bottom-up model of spatial attention predicts human error patterns in rapid scene recognition[J]. Journal of Vision, 2007,7(10): 1-13.
  • 8PETERS R J, ITTI L. Beyond bottom up: incorporating task-dependent influences into a computational model of spatial attention [C] // IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 17-22, 2007, Minneapolis, Minnesota, USA. Minnesota, USA: IEEE, 2007: 1-8.
  • 9GONZALEZ R C, RICHARD E. Digital image processing ( second edition) [M]. Beijing: Publishing House of Electronics Industry, 2003.
  • 10NAVALPAKKAM V, ITTI L. An integrated model of top-down and bottom-up attention for optimizing detection speed computer[C]// 2006 IEEE Computer Society Conference on Vision and Pattern Recognition, June 17 22, 2006, New York, USA, USA: IEEE, 2006:2049-2056.

共引文献28

同被引文献24

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部