期刊文献+

基于DWT与HMM的纸币图像分类方法 被引量:1

Banknote Image Classification Method Combining DWT with HMM
下载PDF
导出
摘要 针对纸币图像退化造成纸币图像识别率下降的问题,提出了一种基于小波变换(DWT)与隐马尔科夫模型(HMM)的实时纸币图像分类方法:首先对纸币图像进行预处理,然后运用DWT提取纸币图像的纹理特征信息,最后运用HMM对纸币图像进行分类。通过对人民币等不同币种进行实验,证明了该方法能有效地克服纸币图像退化对识别率的影响,具有较高的识别率与稳定性。 According to the problem of decreased recognition rate by the degradation of the banknote image,a real time banknote image classification method based on hidden markov models is presented in this paper.Firstly,the proposed method is used to preprocess the banknote image,and then wavelet transform is applied to extract the texture characteristics of banknote.At last,hidden markov model is used to classify the banknote image.In order to verify the validity of the proposed method,the experiments are conducted on different banknotes.The experimental results show that the proposed method overcomes the influence of banknote image degradation on the recognition rate and obtains high recognition rate and high stability.
机构地区 南昌航空大学
出处 《南昌航空大学学报(自然科学版)》 CAS 2012年第3期88-95,共8页 Journal of Nanchang Hangkong University(Natural Sciences)
基金 国家自然科学基金(61162002 60973048) 江西省自然科学基金(20114BAB201034)
关键词 纸币分类 特征提取 小波变换(DWT) 隐马尔科夫模型(HMM) 图像退化 banknote classification feature extraction wavelet transform hidden markov model image degradation
  • 相关文献

参考文献13

  • 1Ionescu, M, Ralescu, A. Fuzzy hamming distance based banknote validator [ C ]. Proceedings of IEEE Conference on Fuzzy Sys- tems, Reno NV, USA, IEEE :2005 :300-305.
  • 2刘家锋,刘松波,唐降龙.一种实时纸币识别方法的研究[J].计算机研究与发展,2003,40(7):1057-1061. 被引量:42
  • 3Chao He, Mark Girolami, Gany Ross. Employing optimized combination of one-class for automated currency validation [J]. Pat- tern Recognition, 2004, 37 (6) : 1085-1096.
  • 4Law M. H. C, Figueiredo M. A. T, Jain A. K. Simultaneous feature selection and clustering using mixture models [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(9) :1154-1166.
  • 5Takeda, F, Omatu, S. High speed paper currency recognition by neural networks [ J ]. IEEE Transactions on Neural Networks, 1995, 6( 1 ) :73-77.
  • 6Choi E, Lee J, Yoon J. Feature Extraction for Bank Note ClassificationUsing Wavelet Transform[ C]. IEEE International Confer- ence on Pattern Recognition, Hongkong, China, 2006:934-937.
  • 7Ye Jin, Ling Song, Xianglong Tang, etal. A Hierarchical Approach for Banknote Image Processing Using Homogeneity and FFD Model [ J ]. IEEE Transactions on Signal Processing Letters. 2008.15 (3) :425-428.
  • 8王明顺,王俊生.基于DSP的纸币光变油墨自动识别的研究[J].中国图象图形学报,2009,14(5):950-956. 被引量:2
  • 9Omatu. S, Yoshioka. M, Kosaka. Y. Reliable Banknote Classification Using Neural Networks [ C ]. Proceedings of IEEE Conference on Advanced Engineering Computing and Application in Sciences,2009:35-40.
  • 10Rashid. A, Prati. A, Cucchiara. R. A real-time embedded solution for skew correction in banknote analysis [ C ]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops,2011:42-49.

二级参考文献13

  • 1尤佳,徐炜.流通人民币纸币的面值识别[J].仪器仪表学报,2003,24(z2):94-95. 被引量:15
  • 2唐春晖.人民币伪钞鉴别仪的鉴伪技术[J].仪表技术,2005(4):80-81. 被引量:12
  • 3李福奎,芦建勇.拓印货币的检验[M].北京:中国人民公安大学出版社,1992:45-70.
  • 4Altera Corporation. Cyclone Ⅱ Device Handbook Volume 1 [ EB/OL]. http://www. Altera. com, 2005.
  • 5Ahera Corporation. Nios Ⅱ Processor Reference Handbook [ EB/OL]. http ://www. Ahera. com, 2004.
  • 6Texas Instruments Incorporated. TMS320C6713,TMS32005713B Floating- Point Digital Signal Processors [ EB/OL]. http://www. Ti. com, 2004.
  • 7Fumiaki Takeda, Sigeru Ornatu. High speed paper currency recognition by neural networks. IEEE Trans on Neural Network,1995, 6(1): 73--77.
  • 8Nei Kato, Shin'chiro Omachi. A handwriting character recognition system using directional element feature. IEEE Trans on Pattern Analysis and Machine Intelligence, 1999, 21(3): 258-- 262.
  • 9J Illing, J Kittler. A survey of the hough transform. Computer on Vision, Graphics, Image Processing, 1988, 44 ( 1 ) : 87-- 116.
  • 10V F Leavers. Which hough transform. Computer on Vision,Graphics, and Image Processing: Image Understanding, 1993, 58(2) : 250-264.

共引文献42

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部