期刊文献+

基于加速度响应连续小波变换的线性时变结构瞬时频率识别 被引量:6

Instantaneous frequencies identification of a linear time-varying structure using continuous wavelet transformation of free decay acceleration response
下载PDF
导出
摘要 推导了函数积分运算的连续小波变换计算方法。借助此法,假设线性时变结构的质量系数为时不变常数,或者其随时间变化的规律已被经验掌握,仅利用线性时变结构自由振动的加速度响应信号,就可以计算出速度响应和位移响应信号的连续小波变换值。将一小段时刻点的线性代数方程组构造成最小二乘问题,求解最小二乘解识别出结构的时变阻尼和时变刚度,从而确定时变结构的瞬时频率。通过对5层剪切梁楼房模型和3自由度密集模态时变结构瞬时频率的识别,验证了识别方法的正确性、有效性和抗噪声能力。 A deduction of continuous wavelet transformation(CWT) of an arbitrary function's integration was presented.Based on this algorithm,assuming a linear time-varying structure's mass coefficients are constants or known in advance,the CWT values of the velocities and displacements responses of a linear time-varying structure were estimated only by using its free decay acceleration response.Consequently,the time-dependent physical parameters(stiffness and damping) at different instance could be determined by solving a least square problem from a group of linear algebraic equations of a short time.Subsequently,a five-story shear-beam building model and a 3-DOF structure with closely spaced modes were investigated and their instantaneous frequencies were identified with the proposed method.Numerical results showed that the proposed identification method has good accuracy and effectiveness,and an improved anti-noise capability.
出处 《振动与冲击》 EI CSCD 北大核心 2012年第20期166-171,共6页 Journal of Vibration and Shock
基金 国家自然科学基金项目(11172131) 江苏省研究生培养创新项目(CX10B_088Z和CX10B_105Z)
关键词 时变系统 参数识别 连续小波变换 加速度响应 time-varying system parametric identification continuous wavelet transformation(CWT) acceleration response
  • 相关文献

参考文献18

  • 1Feldman M. Non-llnear system vibration analysis using Hilbert transform-I: free vibration analysis method FREEV B [J ]. Mechanical Systems and Signal Processing, 1994, 8(2) : 119 - 127.
  • 2Shi Z Y, Law S S, Xu X. Identification of linear time-varying mdof dynamical systems from forced excitation using Hilbert transform and EMD method [ J ]. Journal of Sound and Vibration, 2009, 321:572-589.
  • 3Liu K. Extension of modal analysis to linear time-varying systems [ J. Journal of Sound and Vibration, 1999, 226(1) : 149 - 167.
  • 4Shi Z Y, Law S S, Li H N. Subspaee-based identification of linear time-varying system [ J ]. AIAA Journal, 2007, 45 : 2042 - 2050.
  • 5Staszewski W J. Identification of non-linear systems using multi-scale ridges and skeletons of the wavelet transform[ J]. Journal of Sound and Vibration, 1998, 214:639 -658.
  • 6Ghanem R, Romeo F. A wavelet-based approach for the identification of linear time-varying dynamical systems [ J ]. Journal of Sound and Vibration, 2000, 234:555 -576.
  • 7Chen S L, Lai H C, Ho K C. Identification of linear time varying systems by Haar wavelet [ J ]. International Journal of System Science, 2006, 37:619 -628.
  • 8Poulimenos A G, Fassois S D. Parametric time-domain methods for non-stationary random vibration modelling and analysis a critical survey and comparison [ J ]. Mechanical Systems and Signal Processing, 2006, 20:763 -816.
  • 9Spiridonakos M D,Fassois S D. Parametric identification of a time-varying structure based on vector vibration response measurements [ J ]. Mechanical Systems and Signal Processing, 2009, 23:2029 - 2048.
  • 10Smyth A W, Masrl S F, Kosmatopoulos E B, et al. Development of adaptive modeling techniques for non-linear hysteretic systems [ J ]. International Journal of Non-Linear Mechanics, 2002, 37:1435 - 1451.

二级参考文献45

  • 1庞世伟,于开平,邹经湘.用于时变系统辨识的自由响应递推子空间方法[J].振动工程学报,2005,18(2):233-237. 被引量:18
  • 2庞世伟,于开平,邹经湘.识别时变结构模态参数的改进子空间方法[J].应用力学学报,2005,22(2):184-188. 被引量:24
  • 3Shi Z Y, Law S S. Identification of linear time-varying dynamical systems using Hilbert transform and empirical mode decomposition method [J]. Journal of Applied Mechanics, 2007,74 : 223-230.
  • 4Liu K. Identification of linear time-varying systems [J]. Journal of Sound and Vibration, 1997,204 : 487-- 500.
  • 5Liu K, Deng L. Experimental verification of an algorithm for identification of linear time-varying systems [J]. Journal of Sound and Vibration, 2004, 279: 1 170-1 180.
  • 6Ghanem R Romeo F. A wavelet-based approach for the identification of linear time-varying dynamical systems[J]. Journal of Sound and Vibration, 2000, 234(4):555-576.
  • 7Hou Z K, Hera A, Shinde A. Wavelet-based structural health monitoring of earthquake excited structures [J]. Computer-Aided Civil and Infrastructure Engineering, 2006,21:268-279.
  • 8Hera A, Shinde A, Hou Zhikun. Issues in tracking instantaneous modal parameters for structural health monitoring using wavelet approach[A]. Proceedings of the 23rd International Modal Analysis Conference (IMAC XXIII)[C]. Orlando, Florida, USA, 2005: 338-347.
  • 9Wang C, Ren W X. A wavelet ridge and SVD-based approach for instantaneous frequency identification of structure[A]. Proceedings of the Second International Conference on Structural Condition Assessment, Monitoring and Improvement[C]. Changsha, China, 2007:803-807.
  • 10Cohen L. Time-frequency Analysis[M]. New Jersey: Prentice-Hall, 1995.

共引文献31

同被引文献62

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部