期刊文献+

基于自适应粒子群算法和支持向量机的控制图模式识别 被引量:8

Recognition of Control Chart Pattern by Using Adaptive Mutation Particle Swarm Optimization and Support Vector Machine
下载PDF
导出
摘要 针对目前多品种、复杂化的生产趋势,提出了一种基于自适应变异的粒子群算法(AMPSO)和支持向量机(SVM)的控制图失效模式识别的方法。利用SVM小样本学习能力,设计一对一的SVM多分类器进行控制图模式识别,并利用AMPSO算法优化SVM核函数的参数。通过对10种控制图模式(6种基本模式和4种混合模式)的20维特征仿真数据对该方法进行检验,并通过与BP、SVM、PSO-SVM识别方法的对比分析。仿真试验表明该方法有效提高了控制图模式的识别精度,达到98.14%,而BP仅有75%,为控制图在线实时识别提供了一种可行的途径。 Due to the complexity of production processes resulting from multi -item production, effective production control is necessary. For this purpose, an intelligent control chart pattern recognition method is proposed. This method can improve the recognition accuracy by using adaptive mutation particle swarm op- timization (AMPSO) and support vector machine (SVM) classifier. It uses one - against - one SVM multi -class classifier to recognize the control patterns because of its excellent small sample learning. Mean- while, AMPSO is used to optimize the parameters of SVM kernel function. 20 - dimension simulated data sets of ten control chart patterns, including six fundamental patterns and four mix patterns, are used to test the proposed method. Also, it is compared with BP, SVM, and PSO -SVM methods. Simulation results show that the proposed method can get high recognition accuracy, which is up to 98.14%, while it is 75% if BP is applied. This implies that it is a feasible way to recognize control chart pattern in practice.
作者 张敏 程文明
出处 《工业工程》 北大核心 2012年第5期125-129,共5页 Industrial Engineering Journal
基金 中央高校基本科研业务费专项资金专题研究项目(2010ZT03) 国家自然科学基金资助项目(51175442)
关键词 控制图 模式识别 支持向量机 粒子群 control chart pattern recognition support vector machine particle swarm optimization
  • 相关文献

参考文献15

  • 1Duncan A J. Quality control and industrial statistics [ M ]. 5^th ed. Homewood: Irwin, 1986.
  • 2Cheng C S, Hubele N F. Design of knowledge-base expert system for statistical process control [ J ]. Computers and Indust rial Engineering, 1992, 22(4) :501-517.
  • 3Swift J A, Mize J H. Out-of-control pattern recognition and analysis for quality control charts using lisp-based systems [J]. Computers and Industrial Engineering, 1995,28 (1) : 81-91.
  • 4Hwarng H B, Hubele N F. Back-propagation pattern recognizers for x-bar control charts: methodology and performance [ J ]. Computers and Industrial Engineering, 1993, 24 (2):219-235.
  • 5Hwamg H B, Hubele N F. Back-propagation pattern recognizers for X control charts: methodology and performance [ J ]. Computers & Industrial Engineering, 1993, 24 (2) : 219-235.
  • 6Guh R, Shiue Y. On-line identification of control chart patterns using self-organizing approaches [ J ]. International Journal of Production Research, 2005, 43 (6) : 1225-1254.
  • 7Wang C H, Kuo W. Identification of control chart patterns using wavelet filtering and robust fuzzy clustering [ J ]. Journal of Intelligent Manufacturing, 2007, 18 ( 3 ) : 343-350.
  • 8Wang C H, Guo R S, Chiang M H, et al. Decision tree based control chart pattern recognition [ J ]. International Journal of Production Research, 2008, 46(17) : 124-134.
  • 9Chen Z, Lu S, Lam S. A hybrid system for SPC concurrent pattern recognition [ J ]. Advanced Engineering Informatics 2007, 21(3) :303-310.
  • 10赵方方,何桢.基于SVM的控制图模式识别方法研究[J].组合机床与自动化加工技术,2009(8):1-4. 被引量:13

二级参考文献29

  • 1乐清洪,滕霖,朱名铨,王润孝.质量控制图在线智能诊断分析系统[J].计算机集成制造系统,2004,10(12):1583-1587. 被引量:17
  • 2杨世元,吴德会,苏海涛.基于PCA和SVM的控制图失控模式智能识别方法[J].系统仿真学报,2006,18(5):1314-1318. 被引量:18
  • 3昝涛,费仁元,王民.基于神经网络的控制图异常模式识别研究[J].北京工业大学学报,2006,32(8):673-676. 被引量:13
  • 4王小平 曹立明.遗传算法-理论、算法与软件实现[M].陕西西安:西安交通大学出版社,2002.105-107.
  • 5Suykens J A K, Vandewalle J. Least squares support vector machine classifiers [ J ]. Neural Network Letters, 1999,9 ( 3 ) : 293 - 300.
  • 6R, S. Guh, J. D. T. Tannock. A neural network approach to characterize pattern parameters in process control charts [ J ]. Journal of Intelligent Manufacturing. 1999,10 ( 11 ) :449 - 462.
  • 7YOUSEF AA.. Recognition of control chart patterns using multi-resolution wavelets analas and neural networks [ J ]. Computers&Industrial Engneering, 2004,47 ( 1 ) : 17 - 29.
  • 8Guh R, Tannock J. Recognition of Control Chart Concurrent Patterns Using a Neural Network Approach[J].International Journal Production Research, 1999 .37(8) :1743-1765.
  • 9Cheng C S, Hubele N F. Design of Knowledge--base Expert System for Statistical Process Control[J].Computers and Industrial Engineering, 1992, 22 (4) :501 -517.
  • 10Swift J A,Mize J H. Out--of--control Pattern Recognition and Analysis for Quality Control Charts Using Lisp-based Systems[J].Computers and Industrial Engineering, 1995,28 ( 1 ) : 81-91.

共引文献484

同被引文献46

引证文献8

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部