期刊文献+

推力室中压力剧烈振荡区域的燃烧特性分析 被引量:3

Analysis of Combustion Characteristics in the Region with Violent Pressure Oscillations in Thruster Chamber
下载PDF
导出
摘要 在不施加任何扰动的情况下,对液氧/煤油双组元液体火箭发动机模型燃烧室进行三维非稳态数值模拟,获得了其中的压力自激振荡现象。基于定义的能够辨识定容和定压燃烧特征的第三邓克尔数分析了压力剧烈振荡区域的燃烧特性。结果表明,在压力剧烈振荡区域内,第三邓克尔数取值很大,即发生了准定容燃烧或介于定容和定压之间的燃烧过程。可见尽管液体火箭发动机燃烧室整体表现为定压燃烧特性,但在头部附近区域出现了局部具有非定压特性的燃烧过程,其产生的压力膨胀波来不及迅速传播而使当地的压力迅速升高,形成了定容弹效应,从而导致了燃烧不稳定性的发生。该压力峰的传播及其与室壁相互作用在燃烧室中产生声学不稳定性,与研究燃烧不稳定性的定容弹试验机理相同。 Numerical simulation of the three-dimensional unsteady two-phase reacting flows in the thrust chamber of LOX/ RP-1 liquid rocket engine was conducted. Self-triggered pressure oscillations were obtained without any artificial excitations. The combustion characteristic in the region with violent pressure oscillation was analysed through the third Damk^ihler number defined to classify a combustion process as constant-volume combustion, constant-pressure combustion and combustion with partial expansion and pressure increase. It is shown that the third Damkfihler number is large in the region where violent pres- sure oscillation exists, which means there is constant-volume combustion or combustion with partial expansion and pressure in- crease. Although the overall combustion characteristic of the thrust chamber is constant-pressure combustion, constant-volume combustion may occur locally in the head region of the combustion chamber. The expansion wave generated by exothermic chemical reaction of the constant-volume combustion does not have time to propagate and will lead to pressure peaks. The com- bustion instabilities may be triggered when such pressure peaks propagate and interact with chamber walls. It is the same as the mechanism of the bomb test used to investigate the combustion instability, which indicates that the results obtained is rea- sonable.
出处 《推进技术》 EI CAS CSCD 北大核心 2012年第5期785-789,共5页 Journal of Propulsion Technology
关键词 燃烧不稳定性 双组元液体火箭发动机 定容燃烧 定压燃烧 第三邓克尔数+ Combustion instability BipropeIlant liquid rocket engine Constant-volume combustion Constant-pressurecombustion The third Damkfihler number+
  • 相关文献

参考文献16

  • 1Habiballah M, Lourme D, Pit F. Phedre-Numerical Model for Combustion Stability Studies Applied to the Ariane Viking Engine [ J ]. Journal of Propulsion and Power, 1991, 7(3).
  • 2Habiballah M, Dubois I. Numerical Analysis of Engine Instability[J]. Liquid Rocket Engine Combustion Instability,1995, 169(18) : 475-502.
  • 3Hulka J, Hutt J J. Instability Phenomena in a Liquid Oxygen/Hydrogen Propellant Rocket Engines [ J ]. Liquid Rocket Engine CombUStion Instability,1995, 169: 39-72.
  • 4Lambiris S, Combs L P, Levine R S. Stable Combustion Processes in Liquid Propellant Rocket Engines [ C ]. Braunschweig: Combustion and Propulsion Fifth AGARD Colloquium, 1962.
  • 5Abramzon B, Sirignano W A. Droplet Vaporization Model for Spray Combustion Calculations[ J]. Int. J. Heat Mass Tran. ,1989, 32 (9) : 1605-1618.
  • 6Sirignano W A, Delplanque J P, Chiang C H, et al. Liquid-Propellant Droplet Vaporization: A Rate-Controlling Process for Combustion Instability [ M ]. Washington: A- merican Institute of Aeronautics and Astronautics, 1995, 169 : 307-344.
  • 7Hsiao G C, Meng H, Yang V. Pressure-Coupled Vaporization Response of N-Pentane Fuel Droplet at Subcritical and Supercritical Conditions [ J ]. P. Combust Inst. , 2011, 33(2) : 1997-2003.
  • 8Tong A Y, Sirignano W A. Oscillation Vaporization of Fuel Droplets in an Unstable Combustor [ J ]. Journal of Propulsion and Power, 1989, 5 (3) : 257-261.
  • 9Duvvur A, Chiang C H, Sirignano W A. Oscillatory Fuel Droplet Vaporization-Driving Mechanism for Combustion Instability[ J ]. Journal of Propulsion and Power, 1996, 12(2) : 358-365.
  • 10Huang Y H, Wang Z G. Global Model of Liquid Rocket Engine Combustion Instability Based on Chemistry Dynamics[R]. AIAA 2000-3992.

二级参考文献8

共引文献23

同被引文献23

  • 1聂万胜,丰松江.液体火箭发动机燃烧动力学模型与数值计算[M].北京:国防工业出版社.2011.
  • 2YANG V,ANDERSON W E. Liquid rocket engine combustion instability [ M ]. Restun : AIAA, 1995 : 1-2.
  • 3YU Y C,SISCO J C, ROSEN S. Spontaneous longitudinal com- bustion instability in a continuously variable resonance combus- tor [ J ]. Journal of Propulsion and Power, 2012, 28 ( 5 ) : 876-887.
  • 4POMEROY B R,MORGAN C,ANDERSON W E. Response of a gas-centered swirl coaxial injector to transverse instabilities: AIAA-2011-5698 [ R ]. Reston : AIAA ,2011.
  • 5MILLER K,SISCO J,NUGENT N,et al. Combustion instability with a single-element swirl injector [ J ]. Journal of Propulsion and Power,2007,23(5) :1102-1112.
  • 6POMEROY B R, NUGENT N, ANDERSON W E. Measuring transverse combustion stability at full scale frequencies in a subscale combustor : AIAA-2010-7146 [ R ]. Reston : AIAA ,2010.
  • 7PIERINGER J, SATTELMAYER T, FASSL F. Simulation of combustion instabilities in liquid rocket engines with acoustic perturbation equations [ J]. Journal of Propulsion and Power, 2009,25 (5) :1020-1031.
  • 8TYAGI M, CHAKRAVARTHY S R, SUJ1TH R 1. Unsteady combustion response of a ductcd non-premixed flame and acoustic coupling[ J ]. Combustion Theory and Modeling,2007, 11 (2) : 205-226.
  • 9RICHECOEUR F, DUCRUIX S, SCOUFLAIRE P, et al. Effect of temperature fluctuations on high frequency acoustic coupling [ J ]. Proceedings of the Combustion Institute, 2009,32 (2) : 1663-1670.
  • 10SMITH R, XIA G, ANDERSON W, et al. Computational simula- tions of the effect of backstep height on nonpremixed combus- tion instability [ J ]. AIAA Journal,2010,48 (9) : 1857-1868.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部