期刊文献+

Pseudo-umbilical Biharmonic Submanifolds in Constant Curvature Spaces

Pseudo-umbilical Biharmonic Submanifolds in Constant Curvature Spaces
下载PDF
导出
摘要 The conjecture [1] asserts that any biharmonic submanifold in sphere has constant mean curvature. In this paper, we first prove that this conjecture is true for pseudo-umbilical biharmonic submanifolds M n in constant curvature spaces S n+p (c)(c > 0), generalizing the result in [1]. Secondly, some sufficient conditions for pseudo-umbilical proper biharmonic submanifolds M n to be totally umbilical ones are obtained. The conjecture [1] asserts that any biharmonic submanifold in sphere has constant mean curvature. In this paper, we first prove that this conjecture is true for pseudo-umbilical biharmonic submanifolds Ms in constant curvature spaces Sn+P(c)(c 〉 0), generalizing the result in [1]. Secondly, some sufficient conditions for pseudo-umbilical proper biharmonic submanifolds Ms to be totally umbilical ones are obtained.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第3期432-438,共7页 数学季刊(英文版)
基金 Supported by the NNSF of China(71061012) Supported by the Young Talents Project of Dingxi Teacher's College(2012-2017)
关键词 constant curvature spaces PSEUDO-UMBILICAL proper biharmonic submanifolds constant curvature spaces pseudo-umbilical proper biharmonic submanifolds
  • 相关文献

参考文献1

二级参考文献13

  • 1EELLS J JR, SAMPSON J H. Harmonic mappings of Riemannian manifolds [J]. Amer. J. Math., 1964, 86: 109-160.
  • 2JIANG Guoying. 2-harmonic isometric immersions between Riemannian manifolds [J]. Chinese Ann. Math. Ser. A, 1986, 7(2): 130-144. (in Chinese).
  • 3MONTALDO SI ONICIUC C. A short survey on biharmonic maps between Riemannian manifolds [J]. Rev. Un. Mat. Argentina, 2006, 47(2): 1-22.
  • 4CHEN Bang:yen. Some open problems and conjectures on submanifolds of finite type [J]. Soochow J. Math., 1991, 17(2): 169-188.
  • 5CADDEO R, MONTALDO S, ONICIUC C. Biharmonic submanifolds of S3 [J]. Internat. J. Math., 2001, 12(8): 867-876.
  • 6INOGUCHI J. Submanifolds with harmonic mean curvature vector field in contact 3-manifolds [J]. Colloq. Math., 2004, 100(2): 163-179.
  • 7CADDEO R, MONTALDO S, ONICIUC C. Biharmonic submanifolds in spheres [J]. Israel J. Math., 2002, 130: 109-123.
  • 8LAMM T. Biharmonic map heat flow into manifolds of nonpositive curvature [J]. Calc. Vat. Partial Differential Equations, 2005, 22(4): 421-445.
  • 9ONICIUC C. Biharmonic maps between Riemannian manifolcls [J]. An. Stiint. Univ. AI. I. Cuza Iasi. Mat. (N.S.), 2002, 4S(2): 237-248.
  • 10WANG Changyou. Biharmonic maps from R4 into a Remannian manifold [J]. Math. Z., 2004, 247(1): 65-87.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部