期刊文献+

二维空间格上的具有静止阶段的反应扩散系统的整体解

Entire Solutions to a Reaction-Diffusion System with a Quiescent Stage on a 2D Spatial Lattice
下载PDF
导出
摘要 研究一类二维空间格上的具有静止阶段的反应扩散系统的整体解,这里整体解指的是定义在整个空间和时间上的古典解.构造合适的下解和上估计式,利用比较原理,并利用连接稳定态和不稳定态的空间不依赖解和具有不同波速与传播方向的行波解,证明了整体解的存在性和一些定性性质. The authors study entire solutions to a reaction-diffusion system with quiescent stage on a 2D spatial lattice, where the entire solutions are the classical solutions defined in the whole space and time. Using the comparison principle with appropriate subsolutions and upper estimates, some new entire solutions are constructed by combining a spatially independent solution and traveling wave fronts with different wave speeds and directions of propagation.
出处 《数学年刊(A辑)》 CSCD 北大核心 2012年第5期527-538,共12页 Chinese Annals of Mathematics
基金 国家自然科学基金(No11026127) 中央高校基本科研业务费(NoJY10000970005)资助的项目
关键词 整体解 行波解 空间离散反应扩散方程 静止阶段 Entire solution, Traveling wave front, Spatially discrete reaction-diffusion system, Quiescent stage
  • 相关文献

参考文献26

  • 1Hadeler K P, Lewis M A. Spatial dynamics of the diffusive logistic equation with a sedentary compartment [J]. Canad Appl Math Quart, 2002, 10:473-499.
  • 2Lewis M A, Schmitz G. Biological invasion of an organism with separate mobile and stationary states: modeling and analysis [J]. Forma, 1996, 11:1 -25.
  • 3Murray J D. Mathematical biology [M]. New York: Springer-Verlag, 2003.
  • 4Wang Q R, Zhao X Q. Spreading speed and traveling waves for the diffusive logistic equation with a sedentary compartment [J]. Dyn Contin Discrete Impuls Syst, 2006, 13:231-246.
  • 5Zhang K, Zhao X Q. Asymptotic behaviour of a reaction-diffusion model with a quies- cent stage [J]. Proc Roy Soc Lond A, 2007, 463:1029-1043.
  • 6Zhang P A, Li W T. Monotonicity and uniqueness of traveling waves for a reactiondiffusion model with a quiescent stage [J]. Nonlinear Anal TMA, 2010, 72:2178-2189.
  • 7Zhao H Q, Wu S L. Wave propagation for a reaction-diffusion model with a quiescent stage on a 2D spatial lattice [J]. Nonlinear Anal RWA, 2011, 12:1178 -1191.
  • 8Morita Y, Ninomiya H. Entire solution with merging fronts to reaction-diffusion equa- tions [J]. J Dynam Diff Eq, 2006, 18:841- 861.
  • 9Hamel F, Nadirashvili N. Travelling fronts and entire solutions of the Fisher-KPP equation [J]. Arch Ration Mech Anal, 2001, 157:91-163.
  • 10Chen X F, Guo J S. Existence and uniqueness of entire solutions for a reaction-diffusion equation [J]. J Diff Eq, 2005, 212:62 -84.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部