期刊文献+

一类p-Laplacian椭圆型方程边值问题的解 被引量:1

Solutions for a Class of p-Laplacian Elliptic Boundary Value Problem
下载PDF
导出
摘要 本文研究了一类p-Laplacian椭圆型方程-Δpu=a(x)h(u)-b(x)f(u)齐次边值问题和奇性边值问题解的存在性,其中Δpu=div(|▽u|p-2▽u),p>1,h(u)/up-1在(0,+∞)非增,f(u)/up-1在(0,+∞)非减. In this paper, we study the existence of solutions for a class of p-Laplacian elliptic homogenous and singular boundary value problem - △p u = a ( x ) h (u) - b ( x )f( u ), where △p u = div ( |△ u|^p- 2 △ u), p 〉 1, h (u)/u^p-1 is nonincreasing in (0, + ∞ ), f(u)/u^p-1 is nondeereasing in (0, + ∞ ).
作者 陈莉 袁俊丽
机构地区 南通大学理学院
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期31-36,共6页 Journal of Nanjing Normal University(Natural Science Edition)
基金 国家自然科学基金(11071049) 南通市应用研究项目(K2010042)
关键词 P-LAPLACIAN方程 边界爆破 存在性 p-Laplacian equations, boundary blow-up, existence
  • 相关文献

参考文献20

  • 1Bandle C, Marcus M. ‘Large’ solutions of semilinear elliptic equations: Existence, uniqueness, and asymptotic behaviour[J]. J Anal Math, 1992,58: 9-24.
  • 2Cano-Casanova S,L6pez-G6mez J. Existence,uniqueness and blow-up rate of large solutions for a canonical class of one-di-mensional problems on the half-line [ J ]. J Differential Equations, 2008 , 244; 3 180-3 203.
  • 3Chen Y J,Wang M X. Uniqueness results and asymptotic behavior for logistic-type porous media equations[ J]. Z AngewMath Phys, 2010, 61: 277-292.
  • 4Cirstea F C, Du Y H. General uniqueness results and variation speed for blow-up solutions of elliptic equations[ J]. ProcLondon Math Soc, 2005, 91(2) : 459482.
  • 5Cirstea F C, RSdulescu V. Uniqueness of the blow-up boundary solution of logistic equation with absorption[ J]. C R AcadSci Paris Ser I,2002, 335: 447452.
  • 6Cirstea F C, RSdulescu V. Boundary blow-up in nonlinear elliptic equations of Bieberach-Rademacher type[ J].Trans AmerMath Soc,2007,359 ; 3 275-3 286.
  • 7Ctrstea F C,RSdulescu V. Nonlinear problems with boundary blow-up: a Karamata regular variation theory approach[ J].J MathAnal Appl, 2007, 325: 480-489.
  • 8Delgado M, L6pez-G6mez J, Suarez A. Singular boundary value problems of a porous media logistic equation[ J]. HiroshimaMath J,2004 , 34 : 57-80.
  • 9Du Y H,Guo Z M,Zhou F. Boundary blow-up solutions with interior layers and spikes in a bistable problem[J]. DiscreteContin Dyn Syst, 2007, 19(2) : 271-298.
  • 10Garcia-Meli J. Uniqueness for boundary blow-up problems with continuous weights[ J]. Proc Amer Math Soc, 2007,135(9) : 2 785-2 793.

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部