期刊文献+

周期受击简谐振子系统的经典动力学与准能谱统计 被引量:2

Classical Dynamics and Quasi-Energy Spectral Statistics of a Periodically Kicked Harmonic Oscillator
下载PDF
导出
摘要 研究一个周期受击简谐振子系统在非谐振情况下的经典动力学与准能谱统计.研究发现,随着打击强度κ的增加,经典相空间结构从可积(环)到完全混沌时,准能谱按最近邻能级间距分布仍保持Poisson分布不变,这与周期受击转子系统的结果相同.谱刚度的计算表明,除了κ=30的情况外,κ=0.13、1.6、2.0、2.6等的谱刚度在L<0.1的范围内随L线性变化,呈束状;在L>0.1以后发散开来,呈非线性变化,且κ=0.13的谱刚度趋于饱和.数方差Σ2及高阶矩γ1,γ2随κ的变化不敏感. This paper studies the classical dynamics and quasienergy spectral statistics for a periodically kicked Harmonic oscillator system, under the nonresonance condition. It is found that as we increase the kicking strength K, and the phase space structure starts from tori for integrable system to completely chaotic for nonintegrable system, the nearest neighbor spacing distribution for the quasienergy spectral keeps the Poissonian distribution, and this is similar to that of the periodically kicked free rotor. The result of spectral rigidities shows that except the case of K = 30, the rigidities for K = 0. 13,1. 6,2.0,2. 6, bunched, increase linearly with L for L 〈 0. 1, and spread, increase nonlinearly with L, and the rigidity for K = 0. 13 tends to saturation for L 〉 0. 1. The number variance ∑^Q , skewness Tl , excess T2 are not sensitive to the change of K.
作者 杨双波 韦栋
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期37-42,47,共7页 Journal of Nanjing Normal University(Natural Science Edition)
关键词 混沌 准能量 最近邻间距分布 谱刚度 高阶矩 chaos, quasienergy, nearest neighbor spacing distribution, spectral rigidity, higher moment
  • 相关文献

参考文献9

  • 1Casati G, Chirikov B V,Ford J, et al. Stochastic behavior of a quantum pendulum under periodic perturbation[ J]. LectNotes Phys,1979,93: 334-352.
  • 2Wintgen D, Marxer H. Level statistics of a quantized canton system[ J]. Phys Rev Lett, 1988, 60: 971-974.
  • 3Kilbane D, Cummings A, O’ Sullivan G, et al. Quantum statistics of a kicked particle in an infinite potential well[ J]. Cha-os, Solitons and Fractals, 2006,30: 412-423.
  • 4Heller E J, 0 * Connor P W, Gehlen J. The eigenfunctions of classical chaostic systems[ J]. Physica Scripta,1989, 40: 354-359.
  • 5杨双波,韦栋.周期受击简谐振子系统的经典与量子动力学[J].南京师大学报(自然科学版),2011,34(4):49-54. 被引量:4
  • 6Izrailev F M. Simple models of quantum chaos: spectrum and eigenfunctions[ J]. Phys Rep, 1990, 196: 299-399.
  • 7Casti G, Chirikov B V,Guameri I. Energy-level statistics of integrable quantum systems [ J]. Phys Rev Lett, 1985 , 54:1350-1 353.
  • 8Honig A, Wintgen D. Spectral properties of strongly perturbed Coulomb systems: fluctuation properties [ J].Phys Rev A,1989, 39: 5 642-5 656.
  • 9汪昭,杨双波.势阱中的混沌及其量子对应[J].南京师大学报(自然科学版),2009,32(3):31-36. 被引量:3

二级参考文献15

  • 1Gutzwiller M C. Chaos in Classical and Quantum Mechanics [ M]. New York: Springer-Verlag,1990: 282-300.
  • 2Yang S B, Kellman M E. Semiclassical wave function in the chaotic region from a quantizing cantorus [ J ]. Chemical Physics, 2006, 322 ( 1 ) : 3040.
  • 3Henon M, Heiles C. The applicability of the third integral of motion: some numerical experiments[J]. Astron J, 1964, 69 ( 1 ) : 73-79.
  • 4Waterland R L, Yuan J M, Martens C C, et al. Classical-quantum correspondence in the presence of global chaos[J]. Phys Rev Lett, 1988, 61 (24) : 2 733-2 736.
  • 5Fromhold T M, Wilkinson P B, Sheard F W, et al. Manifestations of classical chaos in the energy level spectrum of a quantum well[J]. Phys Rev Lett, 1995, 75(6) : 1 142-1 145.
  • 6Heller E J, O' Connor P W, Gehlen J. The eigenfunctions of classical chaostic systems[ J]. Physica Scripta, 1989, 40:354- 359.
  • 7Wintgen D, Marxer H, Briggs J S. Properties of off-shell coulomb radial wave functions [ J ]. J Phys A, 1987,20 :L965-L968.
  • 8Casati D, Chirikov B V, Ford J, et al. Stochastic behavior of a quantum pendulum under periodic perturbation[ M ]. Lect Notes Phys, 1979 93:334-352.
  • 9Komogrove A N. On conservation of conditionally periodic motion for small change in Hamilton function [ J]. Dokl Akad Nauk SSSR,1954, 98 : 527-530.
  • 10Arnold V I. Proof of a theorem of A. N. Komogrove of quasi-periodic motion[J]. Usp Mat Nauk SSSR,1963,18:13-40.

共引文献4

同被引文献30

  • 1Casati D, Chirikov BV, Izrailev FM, et al. Stochastic behavior of a quantum pendulum under a periodic perturbation [ M ]// Casati D, Ford J. Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Leture Notes in Physics. Berlin: Springer-Verlag, 1979,93 : 334-352.
  • 2Nakamura K, Okazaki Y, Bishop A R. Periodically pulsed spin dynamics : scaling behavior of semiclassical wave functions [ J ]. Physical Review Letters, 1986,57 ( 1 ) :5-8.
  • 3Haak F. Quantum Signatures of Chaos [ M ]. Berlin, Heidelberg: Springer, 1991 : 52,169.
  • 4Mehta M L. Random Matrices and the Statistical Theory of Energy Levels [ M ]. New York:Academic, 1965.
  • 5Dyson F J, Mehta M L. Statistical theory of the energy levels of complex systems[ J ] J Math Phys, 1963,4(5 ) :701-712.
  • 6Huang Liang, Lai Yingcheng, Grebogi Celso. Characteristics of level-spacing statistics in chaotic graphene billiards [ J ]. Chaos, 2011,21,013102-1-013102-11.
  • 7Honig A, Wintgen D. Spectral properties of strongly perturbed Coulomb systems:fluctuation properties [ J ]. Physical Review A, 1989,39(6) :5 642-5 657.
  • 8Mehta M L. Random Matrices [ M ]. Second edition. San Diego : Academic Press, 1991.
  • 9Strzys M P, Graefe E M, Korsch H J. Kicked bose-hubbard system and kicked tops-destruction and stimulation of tunneling [J]. New Journal of Physics,2008,10:013024-013038.
  • 10Stejskal E O, Tanner J E. Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient [ J ]. J Chem Phys, 1965,42 ( 1 ) :288-293.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部