期刊文献+

一种显著性区域提取的新方法

A Novel Saliency Region Detection Algorithm
下载PDF
导出
摘要 提出一个基于贝叶斯理论和统计学习理论的显著性提取算法.该方法基于贝叶斯理论分别阐明图像中不同特征信息、自下而上显著性和全局显著性不同位置的先验信息.本文针对特征融合问题分别使用加权线性组合Logistic模型和基于加权的非线性组合方法的正则化的神经网络来学习权值并获得所有因子.2个定位数据集的受试者工作特征(ROC)曲线的实验结果表明,我们的方法得到的显著图比其他先进的显著性模型效果更好.扩展的定量评价也证明了非线性组合优于线性组合的策略. A visual saliency detection method based on Bayes' theorem and statistical learning is proposed in this paper. The method clarifies different feature likelihood and different location prior for bottom-up saliency and overall saliency in static images based on Bayes' theorem. For feature integration problem, a weighted linear combination method using logistic model, and a weighted non-linear combination method using regularized neural network are used to learn the weight parameters to combine all factors. Experimental results demonstrate that our method' s bottom-up saliency maps perform better than other state-of-the-art saliency models in two fixation data sets by the metric receiver operator characteristic (ROC) curve. And the extensive quantitative evaluation also demonstrates that the non-linear combination outperforms the linear combination strategy.
作者 叶聪 沈金龙
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期134-137,142,共5页 Journal of Nanjing Normal University(Natural Science Edition)
基金 国家自然科学基金(61100135)
关键词 视觉显著性 贝叶斯理论 中心位置偏倚 神经网络 visual saliency, Bayes' theorem, central bias, neural network
  • 相关文献

参考文献10

  • 1余映,王斌,张立明.基于脉冲余弦变换的选择性视觉注意模型[J].模式识别与人工智能,2010,23(5):616-623. 被引量:7
  • 2韩成美,吕皖丽,罗斌.基于Tchebichef矩的感兴趣区水印[J].计算机工程与设计,2011,32(5):1585-1588. 被引量:2
  • 3Itti L,Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis[ J].IEEE Transactions on Pat-tern Analysis and Machine Intelligence, 1998, 22(11) : 1 254-1 260.
  • 4Harel J, Koch C,Perona P. Graph-based visual saliency[ J].Neural Information Processing Systems, 2006,19:545-552.
  • 5Bruce N D B, Tsotsos J K. Saliency, attention and visual search: An information theoretic approach[ J]. Journal of Vision,2009 , 9: 1-24.
  • 6Gao D, Han S,Vasconcelos N. Discriminant saliency, the detection of suspicious coincidences, and applications to visualrecognition. [ J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(6) : 989-1 005.
  • 7Zhang L, Tong M H,Marks T K,et al. SUN; A bayesian framework for saliency using natural statistics[ J]. Journal of Vi-son, 2008,8(7) : 1-20.
  • 8Torralba A, Oliva A, Castelhano MS, et al. Contextual guidance of eye movements and attention in real-world scenes : therole of global features in object search[ J].Psychological Review, 2006, 113(4) : 766-86.
  • 9Judd T, Ehinger K, Durand F, et al. Learning to predict where humans look[ J].ICCV, 2009 ; 8.
  • 10Goferman S, Zelnik-Manor L, Tal A. Context-aware saliency detection[ J]. IEEE Conference on Computer Vision and Pat-tern Recognition, 2010: 2 376-2 383.

二级参考文献25

  • 1Treisman A M, Gelade G. A Feature-Integration Theory of Attention. Cognitive Psychology, 1980, 12 ( 1 ) : 97 - 136.
  • 2Koch C, Ullman S. Shifts in Selective Visual Attention : Towards the Underlying Neural Circuitry. Human Neurobiology, 1985, 4 ( 4 ) : 219 - 227.
  • 3Desimone R, Duncan J. Neural Mechanisms of Selective Visual Attention. Annual Review of Neuroscienee, 1995, 18:193-222.
  • 4Crick F, Koch C. Constraints on Cortical and Thalamic Projections: the No-Strong-Loops Hypothesis. Nature, 1998, 391 ( 6664 ) : 245 - 250.
  • 5Itti L, Koch C, Niebur E. A Model of Saliency-Based Visual Attention for Rapid Scene Analysis. IEEE Trans on Pattern Analysis and Machine Intelligence, 1998, 20( 11 ) : 1254 - 1259.
  • 6Bruce N D B, Tsotsos J K. Saliency, Attention, and Visual Search : An Information Theoretic Approach. Journal of Vision, 2009, 9 (3) : 1 -24.
  • 7Guo Chenlei, Zhang Liming. A Novel Multiresolution Spatiotemporal Saliency Detection Model and Its Applications in Image and Video Compression. IEEE Trans on Image Processing, 2010, 19 ( 1 ) : 185 - 198.
  • 8Li Zhaoping. A Saliency Map in Primary Visual Cortex. Trends in Cognitive Sciences, 2002, 6( 1 ) : 9 - 16.
  • 9Li Zhaoping. Theoretical Understanding of the Early Visual Processes by Data Compression and Data Selection. Network: Computation in Neural Systems, 2006, 17(4) : 301 -334.
  • 10Gonzalez R C, Woods R E. Digital Image Processing. 2nd Edition. Upper Saddle River, USA: Prentice Hall, 2002.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部