期刊文献+

一个动态边值问题解的存在性讨论 被引量:3

Existence of Solutions to a Dynamic Boundary Value Problem
下载PDF
导出
摘要 讨论源于流体动力学的一类抛物型方程非局部动态边值问题.结合Sobolev-Slobodeckij空间和不动点定理证明解的存在唯一性. A dynamic boundary value problem of parabolic equation is investigated. Existence of classic solutions is proved by combining the Sobolev-Slobodeckij space theory and fixed point theorem.
机构地区 上海大学理学院
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第5期496-499,共4页 Journal of Shanghai University:Natural Science Edition
基金 上海市教委重点学科建设资助项目(J50101)
关键词 抛物型方程 非局部 边值问题 parabolic equation nonlocal boundary value problem
  • 相关文献

参考文献11

  • 1CRISCIANI F, PURINI R. A note on the dynamic boundary conditions in Munk-like circulation models [ J ]. The European Physical Journal B, 2003, 31 ( 1 ) :571- 575.
  • 2KUNDU P K, COHEN I M. Fluid mechanics [ M ]. Kidlington: Academic Press, 2008.
  • 3ROLL H U. Physics of the marine atmosphere [ M ]. Kidlington : Academic Press, 1965.
  • 4WU H, ZHENG S. Convergence to equilibrium for the Cahn-Hilliard equation with dynamic boundary condi- tions [ J]. J Differential Equations, 2004, 204(2) :511-531.
  • 5GIANNI R. On a parabolic equation with non-local boundary condition [ J ]. Mathematical Models and Methods in Applied Sciences, 1993, 6 (3) :789-804.
  • 6DAY W A. Decreasing property of solutions of parabolic equation with applications to thermoelasticity [ J ]. Quart Appl Math, 1983, 40( 1 ) :468-475.
  • 7WANG Y. Weak solutions for nonlocal boundary value problems with low regularity data [ J ]. Nonlinear Anal, 2007 : 103-125.
  • 8LASIECKA I. Mathematical control theory of coupled PDE' s [ M ]. Philadelphia, PA : SIAM, 2002.
  • 9WANG Y, ZI-IENG S. The existence and behavior of solutions for nonlocal boundary problems [ J ]. Boundary Value Problems, 2009, Doi : 10.1155/2009/484879.
  • 10LADY~ENSKAJA O A, SOLONNIKOV V A, URAL'CEVA M N. Linear and quasi-linear equations of parabolic type [ M ]. Boston : American Mathematical Society, 1968.

共引文献6

同被引文献21

  • 1叶其孝 李正元.反应扩散方程引论[M].北京:科学出版社,1999..
  • 2CRISCIANI F, PURINI a. A note on the dynamic boundary conditions in Munklike circulation models [J]. The European Physical Journal B, 2003, 31: 571-575.
  • 3KUNDU P K, COHEN I M. Fluid mechanics [M]. San Diego: Academic Press, 2008.
  • 4ROLL H U. Physics of the marine atmosphere [M]. San Diego: Academic Press, 1965.
  • 5WU H, ZHENG S. Convergence to equilibrium for the Cahn-Hilliard equation with dynamic boundary conditions [J]. J Differential Equations, 2004, 204(2): 511-531.
  • 6NICA O, PRECUP R. On the nonlocal initial value problem for first order differential systems [J]. Stud Univ Babe~-Bolyai Math, 2011, 56(3): 113-125.
  • 7BYSZEWSKI L. Theorems about the existence and uniqueness of solutions of a semilinear evolu- tion nonlocal Cauchy problem [J]. J of Math Anal and Appl, 1991, 162(2): 494-505.
  • 8BABAK P. Nonlocal initial problems for coupled reaction-diffusion systems and their applica- tions [J]. Nonlinear Analysis: Real World Applications, 2007, 8(3): 980-996.
  • 9PUL'KINA L S. A nonlocal problem with integral conditions for a hyperbolic equation [J]. Dif- ferential Equations, 2004, 40(7): 947-953.
  • 10LI F, LIANG ~], LU T T, et al. A nonlocal Cauchy problem for fractional integro differential equations [J], J of Applied Math, 2012, DOI: 10.1155/2012/901942.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部