期刊文献+

一类区间规划问题的对偶理论

Duality theory for a class of interval-valued programming
下载PDF
导出
摘要 讨论目标函数是区间函数的区间规划问题.定义MW最优解的概念,并给出一类新的对偶模型,在(p,r)-ρ-(η,θ)-不变凸函数定义下证明弱对偶、强对偶和逆对偶定理. The interval-valued programming with interval-valued function as its objective function was discussed.The concept of MW optimal solution was defined first and then a class of new type duality model was given.Finally,the theorems of weak,strong and converse duality were proved under(p,r)-ρ-(η,θ)-invexity assumptions.
出处 《兰州理工大学学报》 CAS 北大核心 2012年第5期141-144,共4页 Journal of Lanzhou University of Technology
基金 国家自然科学基金(11271367)
关键词 不确定优化 区间规划 对偶 (p r)-ρ-(η θ)-不变凸函数 uncertain optimization interval-valued programming duality (p r)-ρ-(η θ)-invexity function
  • 相关文献

参考文献14

  • 1ISHIBUCHI H,TANAKA H. Multiobjective programming in optimization of the interval objective function [ J]. Eur J Oper Res, 1990,48 : 219-225.
  • 2TONG S C. Interval number and fuzzy number linear program- ming [J]. Fuzzy Sets Syst, 1994,66:301-306.
  • 3IDA M. Portfolio Selection Problem with Interval Coefficients [J]. Appl Math Lett, 2003,16 : 709-713.
  • 4HUANG Y F,BAETZ B W,HUANG G H. Violation analysis for solid waste management systems: an interval fuzzy pro- gramming approach [J]. J Environ Manage, 2002,65 : 431-446.
  • 5OLIVEIRA C. Multiple objective linear programming models with interval coefficients-illustrated overview [J]. Eur J Oper Res,2007,181 : 1434-1463.
  • 6ALEFELD G, MAYER G. Interval analysis: theory and appli- cations [J]. J Comput Appl Math, 2000,121:421-464.
  • 7DING K, HUANG N J. A new class of interval projection neu- ral networks for solving interval quadratic program [J]. Chaos Solitons Fract, 2008,25 : 718-725.
  • 8LI W,TIAN X L. Numerical solution method for general inter- val quadratic programming [J]. Appl Math Comput, 2008, 202: 589-595.
  • 9WU H C. Duality theory for optimization problems with inter- val-valued objective functions [J]. J Optim Theory Appl, 2010,144 : 615-628.
  • 10WU H C. Wolfe duality for interval-valued optimization [J]. J Optim Theory Appl, 2008,138: 497-509.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部