期刊文献+

TC11钛合金线性摩擦焊界面微观组织演变 被引量:7

Microstructural Evolution of TC11 Titanium Alloy at Rubbing Interface During Linear Friction Welding
下载PDF
导出
摘要 为了探明TC11钛合金线性摩擦焊过程中界面金属微观组织演变规律,采用光学显微镜和扫描电镜来研究飞边与接头的微观组织。结果表明,线性摩擦焊界面演变过程可依次分为摩擦磨损、黏着剪切、界面金属形成金属键连接并发生大变形、动态再结晶四个阶段。当摩擦时间足够长时,整个摩擦界面温度趋于均匀,在界面上将形成一层厚度均匀的塑性金属层,α相完全转变为β相,并且初生β相晶粒将发生动态再结晶过程。随着摩擦时间的延长,界面温度升高,初生β相动态再结晶晶粒尺寸增大。 Microstructure of flash and joint was investigated using optical microscopy (OPM) and scanning electron microscopy (SEM) for understanding microstructure evolution of TCll titanium al loy at the rubbing interface during linear friction welding. The results show that microstructure evolu tion of titanium alloy at the rubbing interface during linear friction welding contained four stages, that is, sliding friction and wearing, sticking and shearing friction, forming metallic bond and having a highly deformed microstructure, dynamic recrystallization in sequence. Temperature was uniform at the rubbing interface for sufficient friction time, and plastically deformed material was formed. That resulted in complete transformation of alpha to beta phase and then dynamic recrystallization of prior beta phase. The dynamic recrystallization grain size of prior beta phase would be greater with friction time rising due to higher temperature.
出处 《材料工程》 EI CAS CSCD 北大核心 2012年第10期39-43,共5页 Journal of Materials Engineering
关键词 钛合金 线性摩擦焊 微观组织 titanium alloy linear friction welding microstructure
  • 相关文献

参考文献11

  • 1GINN B J, GOOCH T G. Toughness of 2‰Cr ferritic/ martensi- tic steel welds produced by non-arc welding processes [J]. Weld- ing Reaserch Supplement, 1998, (8) : 341 s- 349s.
  • 2LIW Y, MA T J, YANG S Q, et al. Effect of friction time on flash shape and axial shortening of linear friction welded 45 steel [J].Materials Letters, 2008, 62(2): 293-296.
  • 3CAROLINE M, MOHAMMAD J. Multi-scale analysis of IN 718 mierostructure evolution during linear friction welding [J]. Ad- vanced Engineering Materials, 2008, 10(6): 573-578.
  • 4KARADGEA M, PREUSSA M, WITHERSA P J, et al. Impor tance of crystal orientation in linear friction joining of single crys tal to polyerystalline nickel-based superalloy[J]. Materials Sei ence and Engineering A, 2008, 491(1-2): 446-453.
  • 5MAT J, I.IWY, YANGSY. Impact toughness and fracture a- nalysis of linear friction welded Ti-6AI-4V alloy ioints [J]. Mate- rials and Design, 2009, 30(6): 2128-2132.
  • 6VAIRIS A, FROST M. Modelling the linear friction welding of titanium blocks [J].Materials Science and Engineering A, 2000, 292(1); 8-17.
  • 7VAIRIS A. Superplasticity effects and strain rate dependency in A material joining process[J]. Journal of Engineering Science and Technology Review, 2008,(1) : 28-32.
  • 8LI W Y, MA T J, ZHANG Y, et al. Microstructure character ization and mechanical properties of linear friction welded Ti-6AI 4V alloy [J]. Advanced Engineering Materials,2008, I0 (1- 2) 89 92.
  • 9WANJARA P, JAHAZI M. Linear friction welding of Ti-6A1 4V: processing, microstructure and mechanical-property inter-re lationships [J]. Metallurgical and Materials Transactions A 2005, :36A(8): 2149-2164.
  • 10KARAI)GE M, PREUSS M, I.OVELL C, et al. Texture devel- opment in Ti-6A1-4V linear friction welds [J].Materials Science and Engineering A, 2007, 459(1-2): 182-191.

同被引文献48

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部