期刊文献+

A Study on the Dynamic Mechanism of the Formation of Mesoscale Vortex in Col Field 被引量:2

A Study on the Dynamic Mechanism of the Formation of Mesoscale Vortex in Col Field
下载PDF
导出
摘要 The mesoscale vortex associated with a mesoscale low-level jet (mLLJ) usually causes heavy rainfall in the col field. The col field is defined as a region between two highs and two lows, with the isobaric surface similar to a col. Using a two-dimensional shallow water model, the meso-β scale vortex couplets (MβVCs) induced by eight types of mesoscale wind perturbations in an ideal col field were numerically simulated. With the sizes of -100 km, the MβVCs induced by northerly perturbation (NP) and southerly perturbation (SP) moved toward the col point. The sizes of MβVCs induced by southwesterly perturbation (SWP), southeasterly perturbation (SEP), northwesterly perturbation (NWP), and northeasterly perturbation (NEP) were relatively small for the perturbations moving toward dilatation axis. The MβVC induced by easterly perturbation (EP) and westerly perturbation (WP) could not develop because they quickly moved away from the col point, before the circulation could form. The size of the circulation was determined by the distance between the vortex and the col point. The closer to the col point the vortex was, the larger the size of vortex. The comparisons of maximum vorticity and vorticity root mean square error (RMSE) of the NP, the SWP, and the WP show that the maximum vorticity and the vorticity RMSE of the NP decreased slower than other perturbations. Therefore, the weak environment of the col field favors the maintenance of vorticity and the formation of vortex. When a mesoscale vortex forms near the col point or moves toward the col point, it may maintain a quasitationary state in the stable col field. The mesoscale vortex associated with a mesoscale low-level jet (mLLJ) usually causes heavy rainfall in the col field. The col field is defined as a region between two highs and two lows, with the isobaric surface similar to a col. Using a two-dimensional shallow water model, the meso-β scale vortex couplets (MβVCs) induced by eight types of mesoscale wind perturbations in an ideal col field were numerically simulated. With the sizes of -100 km, the MβVCs induced by northerly perturbation (NP) and southerly perturbation (SP) moved toward the col point. The sizes of MβVCs induced by southwesterly perturbation (SWP), southeasterly perturbation (SEP), northwesterly perturbation (NWP), and northeasterly perturbation (NEP) were relatively small for the perturbations moving toward dilatation axis. The MβVC induced by easterly perturbation (EP) and westerly perturbation (WP) could not develop because they quickly moved away from the col point, before the circulation could form. The size of the circulation was determined by the distance between the vortex and the col point. The closer to the col point the vortex was, the larger the size of vortex. The comparisons of maximum vorticity and vorticity root mean square error (RMSE) of the NP, the SWP, and the WP show that the maximum vorticity and the vorticity RMSE of the NP decreased slower than other perturbations. Therefore, the weak environment of the col field favors the maintenance of vorticity and the formation of vortex. When a mesoscale vortex forms near the col point or moves toward the col point, it may maintain a quasitationary state in the stable col field.
出处 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第6期1215-1226,共12页 大气科学进展(英文版)
基金 supported by the National Fundamental Research Program of China(Grant No.2009CB421502) the National Natural Science Foundation of China (Grant Nos.40830958,41275099 and 40905021) the Special Fund for Meteorology-scientific Research in the Public Interest(GYHY200906011)
关键词 col field mesoscale vortex mesoscale low-level jet point vorticity numerical simulation col field, mesoscale vortex, mesoscale low-level jet, point vorticity, numerical simulation
  • 相关文献

参考文献9

二级参考文献76

共引文献304

同被引文献53

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部