期刊文献+

pH对制备直接甲醇燃料电池新型Ir_xS_(1-x)-C阴极催化剂的影响

Influence of pH on Preparation of Novel Ir_xS_(1-x)-C Cathodic Catalysts in Direct Methanol Fuel Cell
下载PDF
导出
摘要 以柠檬酸钠为稳定剂,采用氯铱酸、亚硫酸钠、硼氢化钠等为反应物,利用浸渍还原法制备IrxS1-x-C(x=0.7)催化剂;采用粉末X射线衍射、透射电子显微镜、旋转圆盘电极、循环伏安法等测试手段,对比样品在不同pH条件下所制备催化剂的性能。结果表明,当pH=5时,IrxS1-x-C催化剂物相不稳定,并且有杂相生成;当pH=11时,制得的IrxS1-x-C催化剂颗粒的粒度较小,分散性良好,且电化学性能相对优越。 Novel methanol tolerant oxygen reduction catalysts,IrxS1-x-C(x=0.7) used in direct methanol fuel cell,were synthesized via a precipitation method by using H2IrCl6 and Na2SO3 as the precursors,and sodium citrate as the stabilizer,respectively.Powder X ray diffraction and transmission electron microscopy were applied to characterize the phase and morphology of IrxS1-x-C cathodic catalysts respectively.The cyclic voltammetry and rotating disk electrode methods were used for the characterization of the catalyst electroactivity and the catalyzed oxygen reduction reaction kinetics.The performances of different samples prepared in the solution at different pH values were compared.The results show that when pH is 5,IrxS1-x-C phase is instable and the impurity phases generates.When pH is 11,IrxS1-x-C catalysts present the smallest particle size,a well dispersion,and the relatively superior electrochemical properties,comparing to other samples made at pH being 7,9 and 13.
出处 《中国粉体技术》 CAS 北大核心 2012年第5期1-5,共5页 China Powder Science and Technology
基金 国家高技术研究发展计划(863计划)项目 编号:2007AA05Z146 2007AA05Z150
关键词 直接甲醇燃料电池 IrxS1-x-C阴极催化剂 电化学性能 direct methanol fuel cell IrxS1-x-C cathodic catalyst electrochemical property
  • 相关文献

参考文献2

二级参考文献48

  • 1宋树芹,梁振兴,周卫江,孙公权,辛勤.DMFC的阻甲醇渗透研究进展[J].电池,2004,34(4):292-294. 被引量:6
  • 2Alonso-Vante, N., Malakhov,I. V., Nikitenko, S. G., Savinova, E. R., & Kochubey, D. I. (2002). The structure analysis of the active centers of Ru-containing electrocatalysts for the oxygen reduction. An in situ EXAFS study. Electrochimica Acta, 47(22), 3807-3814.
  • 3Alonso-Vante, N., & Tributsch, H. (1986). Energy conversion catalysis using semiconducting transition metal cluster compounds. Nature, 323(2), 431-432.
  • 4Aramata, A., Yamazaki, T., Kunimatsu, K., & Enyo, M. (1987). Electrooxidation of methanol on iridium in acidic solutions: Electrocatalysis and surface characterization by infrared spectroscopy. Journal of Physical and Chemistry, 91(9), 2309-2314.
  • 5Bagotzky, V. S., Vassiliev, Y. B., Khazova, O. A., & Sedova, S. S. (1971). Adsorption and anodic oxidation of methanol on iridium and rhodium electrodes. Electrochimica Acta, 16(7), 913-938.
  • 6Bashyam, R., & Zelenay, P. (2006). A class of non-precious metal composite catalysts for fuel cells. Nature, 443(7), 63-66.
  • 7Bogdanoff, P., Herrmann, I., Hilgendorff, M., Dorbandt, I., Fiechter, S., & Tributsch, H. (2004). Probing structural effects of pyrolysed CoTMPP-based electrocatalysts for oxygen reduction via new preparation strategies.Journal of New Materials for Electrochemical Systems, 7, 85-92.
  • 8Breiter, M. W. (1962). Comparative voltammetric study of methanol oxidation and adsorption on noble metal electrodes in perchloric acid solutions. Electrochimica Acta, 8(12), 973 -983.
  • 9Bron, M., Fiechter, S., Hilgendorff, M., & Bogdanoff, P. (2002). Catalysts for oxygen reduction from heat-treated carbon-supported iron phenanthroline complexes. Journal of Applied Electrochemistry, 32( 1 ), 211-216.
  • 10Cao, D., Wieckowski, A., lnukai, J., & Alonso-Vante, N. (2006). Oxygen reduction reaction on ruthenium and rhodium nanoparticles modified with selenium and sulfur.Journal of the Electrochemical Society, 153(5), A869-A874.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部