期刊文献+

基于分形布朗业务模型的差分队列服务建模

Modeling of Differentiated Queuing Service Based on FBM Traffic Model
下载PDF
导出
摘要 差分队列服务(DQS)是一种在有线与无线融合网络中能有效提供服务质量的服务质量模型,文中基于DQS的思想,将具有相同时延要求的到达业务作为一个分形布朗运动(FBM)业务,建立了一个针对多个FBM业务及对应时延要求的差分队列服务模型,并推导出该模型下的丢包率公式.仿真结果表明,文中模型分析的结果与基于数据包粒度的仿真结果是一致的.模型性能分析结果表明,实时业务的突发性对差分队列服务的服务质量保证影响较大. Differentiated queuing service (DQS) is a QoS (Quality of Service) model that can efficiently provide QoS for wired and wireless integrated networks. In this paper, based on the service discipline of DQS, the arriving flows with the same delay requirement are taken as an FBM (Fractional Brownian Motion) traffic, and then the DQS models with multi-class FBM traffic and with the corresponding delay requirements are established. Moreover, the formula of the packet loss is deduced according to the proposed models. It is shown that the simulated results of the proposed models are consistent with those obtained based on the packet size. Besides, the analytical results of the model performances also demonstrate that the burstiness of real-time traffic greatly affects the QoS guarantee of DQS.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第9期87-92,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家"973"计划项目(2011CB707003) 华南理工大学中央高校基本科研业务费专项资金资助项目(2012ZM0021)
关键词 融合网络 服务质量 差分队列服务 分形布朗运动 integrated network quality of service differentiated queuing service fractional Brownian motion
  • 相关文献

参考文献16

  • 1Callejo R M, Enriquez G J, Burakowski W, et al. Euqos: end-to-end QoS over heterogeneous networks [ C ] //Proceedings of the Innovations in NGN : Future Network and Services. Geneva : ITU-T,2008 : 177-184.
  • 2Senkindu S, Chan H. Enabling end-to-end quality of ser- vice in a WLAN-wired network [ C ]//Proceedings of the IEEE Military Communications. San Diego : IEEE, 2008 : 1-7.
  • 3Stuckmann P, Zimmermann R. European research on fu- ture internet design [ J]. IEEE Wireless Communications, 2009,16(5) :14-22.
  • 4Jiang Sheng-ming. Granular vices for QoS: structure and differentiated queueing set- cost model [ J 1. ACM SIG- COMM Computer Communication Review, 2005,35 ( 2 ) 13-22.
  • 5Jiang Sheng-ming. Differentiated queueing service (DQS) for end-to-end QoS provisioning: an evaluation from per- flow,per-class to per-packet [ C ]//Recent Advances in providing QoS and reliability in the future Internet back- bone. New York : Nova Science,2011 : 13-28.
  • 6Jiang Sheng-ming. Future wireless and optical networks: networking modes and cross-layer design [ M ]. London: Springer-Verlag, 2012 : 73-102.
  • 7Grimm C, Schluchtermann G.IP traffic theory and per- fomlance [ M ]. Berlin/Heidelberg : Springer-Verlag, 2008 : 22-28.
  • 8Leland W,Taqqu M, Willinger W, et al. On the self-simi- lar nature of Ethernet traffic( extend version) [ J]. IEEE/ ACM Transactions on Networking,1994,2( 1 ) :1-15.
  • 9Norros I. A storage model with self-similar input [ J ]. Queueing Systems, 1994,16:387-396.
  • 10Mannersalo P, Norros I. A most probable path approach to queueing systems with general Gaussian input [ J ]. Computer Networks ,2002,40 ( 3 ) :399-412.

二级参考文献16

  • 1Leland W E,Taqqu M S,Willinger W.On the self-similar nature of ethernet traffic[C]//Proc of Sigcomm'93.San Francisco:ACM,1993:183-193.
  • 2Leland W E,Taqqu M S,Willinger W.On the self-similar nature of ethernet traffic(extended version)[J].IEEE Transactions on Networking,1994,2(1):1-15.
  • 3Lau W.Self-similar traffic generation:the random midpoint displacement algorithm and its properties[C]//Proc of ICC'95.Seattle:IEEE,1995:466-472.
  • 4Garrett M W,Willinger W.Analysis,modeling and generationof self-similar traffic[C]//Proc of Sigcomm'94.London:ACM,1994:269-280.
  • 5Jordon J.Pareto process as a model of self-similar packet traffic[C]//Proc of Globecom' 95.Singapore:IEEE,1995:2232-2236.
  • 6Choi B D,Kim B,Wee I S.Asymptotic behavior of loss probability in GI/M/1/K queue as K[J].Queuing Systems,2000,36(4):437-442.
  • 7Koh Y,Kim K.Loss probability behavior of Pareto/M/1/K queue[J].IEEE Communications Letters,2003,7(1):39-41.
  • 8Feldmann A,Whitt W.Fitting mixtures of exponentials to long-tail distributions to analyze network performance models[J].Performance Evaluation,1998,31(3/4):245-279.
  • 9Neuts M F.Matrix-geometric solutions in stochastic models:an algorithmic approach[M].Baltimore:Johns Hopkins University Press,1981.
  • 10Leland W, Taqqu M, Willinger W, et al. On the Self-similar Nature of Ethernet Traffic[J]. IEEE/ACM Transactions on Networking, 1994, 2(1): 1-15.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部