期刊文献+

4基数模集合反向转换器的设计

Design of Reverse Converter for Four-Moduli Set
下载PDF
导出
摘要 针对大动态范围剩余数系统,给出了一个新的4基数模集合{2n-1,22n+1,2n+1,2n-1},基于新中国余数定理1实现了该模集合的剩余数至二进制的高效并行转换算法,并给出相应的转换器电路实现.与同类模集合反向转换器相比,文中提出的转换器电路完全由加法器构成,大大降低了对硬件电路的要求,明显减小了转换器的面积和电路延迟,提高了转换效率. Aiming at large DR (dynamic range) residue number systems (RNS), a new four-moduli set { 2 n-1, 2 2n + 1, 2 n + 1, 2n - 1 } is proposed. Then, a high efficiency and parallel conversion algorithm for the residue-tobinary conversion of the new moduli set is realized based on the new Chinese remainder theorem 1, and the corresponding converter circuit is designed. As compared with the common converters using the same 5n-bit DR moduli set, the proposed converter adopts adders as the primitive operators, so that it greatly reduces the hardware requirement and significantly decreases the area and delay, thus increasing the conversion efficiency.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第9期93-96,103,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60776020)
关键词 反向转换器 加法器 剩余数系统 新中国余数定理 reverse converter adder residue number system new Chinese remainder theorem
  • 相关文献

参考文献15

  • 1Garner H L. The residue number system [ J ]. IRE Transa- ctions on Electronic Computers, 1959,8 ( 6 ) : 140-147.
  • 2Szabo N S,Tanaka R I. Residue arithmetic and its appli- cations to computer technology [ M ]. New York : McGraw- Hill, 1967 : 1-20.
  • 3Alia G, Martinelli E. A VLSI algorithm for direct and re- verse conversion from weighted binary number to residue number system [ Jl. IEEE Transactions on Circuits and Systems, 1984,31 ( 12 ) : 1425-1431.
  • 4Capocelliand R M, Giancarlo R. Efficient VLSI networks for converting an integer from binary system to residue number system and vice versa [ J]. IEEE Transactions on Circuits and Systems, 1988,35 ( 11 ) : 1425-1431.
  • 5ParhiKeshabK.VLSI数字信号处理系统设计与实现[M].英文版.北京:机械工业出版社,2003:63-88.
  • 6Wang Yuke. Residue-to-binary converters based on new Chinese remainder theorems [ J ]. IEEE Transactions on Circuits and Systems-Ⅱ: Analog and Digital Processing, 2000,47 ( 3 ) : 197-205.
  • 7Wang Y, Song X, Aboulhamid M, et al. Adder based resi- due to binary number converters for ( 2^n - 1,2^n, 2^n + 1 ) [ J ]. IEEE Transactions on Signal Processing, 2002,50 (7) : 1772-1779.
  • 8Cao B, Chang C H, Srikanthan T. An efficient reverse con- verter for the 4-moduli set { 2^n - 1,2^n,2^n + 1,22^n + 1 } based on the new Chinese remainder theorem [ J ]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,2003,50 (10) : 1296-1303.
  • 9Hiasat A A. VLSI implementation of new arithmetic resi- due to binary decoders [J]. IEEE Transactions on Very Large Scale Integeration Systems ,2005,13 ( 1 ) : 153-158.
  • 10陈建文,姚若河.高效的五基数剩余数至二进制数转换器设计[J].华南理工大学学报(自然科学版),2010,38(5):55-60. 被引量:1

二级参考文献13

  • 1帕赫.VLSI数字信号处理系统:设计与实现(英文版)[M].北京:机械工业出版社,2003:74-81.
  • 2Israel Koren.Computer arithmetic algorithms[M].2nd ed.Massachusetts:AK Peters Natick,2002:259-274.
  • 3Wang Yuke.Residue-to-binary converters based on new Chinese remainder theorems[J].IEEE Transactions on Circuits and Systems II,2000,47(3):197-205.
  • 4Wang Yuke,Song X,Aboulhamid M,et al.Adder based residue to binary number converters for (2n-1,2n,2n+1)[J].IEEE Transactions on Signal Processing,2002,50(7):1772-1779.
  • 5Cao Bin,Chang C,Srikanthan H.A residue-to-binary converter for a new five-moduli set[J].IEEE Transactions on Circuits and Systems I,2007,54(5):1041-1049.
  • 6Hiasat A.Efficient residue to binary converter[J].IEE Proceedings-Computers and Digital Techniques,2003,150(1):11-16.
  • 7Skavantzos A.An efficient residue to weighted converter for a new residue number system[C] ∥Proceeding of the 8th Great Lakes Symposium VLSI.New Orleans:IEEE,1998:185-191.
  • 8Mathew J,Radhakrishnan D,Srikanthan T.Fast residue-to-binary converter architectures[C] ∥Proceeding of the 42nd Midwest Symposium on Circuits and Systems.Midwest:IEEE,2000:1090-1093.
  • 9Piestrak S J.A high-speed realization of a residue to binary number system converter[J].IEEE Transactions on Circuits and Systems II,1995,42(10):661-663.
  • 10Efstathiou C,Vergos H T,Nikolos D.Modified booth modulo 2n-1 multipliers[J].IEEE Transactions on Computers,2004,53(3):370-374.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部