期刊文献+

分布式环境下的隐私保护特征选择研究

Privacy Preserving Feature Selection in Distributed Environment
下载PDF
导出
摘要 在Map-Reduce的分布式环境框架下,基于微分隐私与主成分分析,并与熵、误分类增益、基尼指数等统计量相结合,提出了一种新的在分布式环境下的隐私保护特征选择算法,实现了在保护数据集隐私的同时保护特征的隐私.仿真实验结果表明,该算法具有较好的性能,能够在保护一定程度隐私信息的同时,有效地进行特征选择. Privacy preserving and feature selection are very important in data mining. Thus, how to select feature effectively based on privacy preserving is also a hot topic. Under the Map-Reduce distributed enviromnent framework, pro-posed was the combination of the differential privacy and principal component analysis with the statistics including entropy, misclassification gain, and gini index, a new privacy preserving feature selection algorithm on distributed environ- ment. The algorithm achieved the purposes of protecting privacy of both data sets and features. The simulation results on several bench-mark data sets indicated that this algorithm performed well. During the selection of the important features, it could protect privacy information to a certain extent.
出处 《南京师范大学学报(工程技术版)》 CAS 2012年第3期60-67,共8页 Journal of Nanjing Normal University(Engineering and Technology Edition)
基金 国家自然科学基金(61073114)
关键词 隐私保护 特征选择 分布式 微分隐私 主成分分析 privacy preserving, feature selection, distribution, differential privacy, principal component analysis
  • 相关文献

参考文献18

  • 1Dash M, Liu H. Feature selection for classification [ J ]. Intelligent Data Analysis, 1997, 1 (3) : 131-156.
  • 2Liu H, Yu L. Toward integrating feature selection algorithms for classification and clustering[ J]. IEEE Transactions on Knowl- edge and Data Engineering, 2005, 17(3) : 1-12.
  • 3Guyon I, Elisseeff A. An introduction to variable and feature selection[ J]. Journal of Machine Learning Research, 2003 (3) : 1 157-1 182.
  • 4O' Leary D E. Knowledge Discovery as a Threat to Database Security Knowledge Discovery in Database [ M ]. Menloprk, CA: AAA~MIF Press, 1991 : 507-516.
  • 5Sweeney L. K-anonymity: a model for protecting privacy [ J ]. International Journal on Uncertainty, Fuzziness and Knowledge- based Systems, 2002, 10(5) : 557-570.
  • 6Clifton C, Kantarcioglu M, Vaidya J, et al. Tools for privacy preserving distributed data mining[ J]. ACM SIGKDD Explora- tions Newsl, 2002, 4 (2) : 28-34.
  • 7Dwork C. Differential privacy[ C]//Proc of the 33rd ICALP. Venice, 2006.
  • 8葛新景,朱建明.基于博弈论的隐私保护分布式数据挖掘[J].计算机科学,2011,38(11):161-166. 被引量:8
  • 9Das K. Privacy preserving distributed data mining based on multi-objective optimization and algorithmic game theory [ D ]. Baltimore: University of Maryland Baltimore County, 2009.
  • 10Das K, Bhaduri K, Kargupta H. A local asynchronous distributed privacy preserving feature selection algorithm for large peer- to-peer networks [ J ]. Knowledge Information System, 2010,24 ( 3 ) : 341-367.

二级参考文献10

  • 1Vaidya J S, Clifton C. Privacy preserving association rule mining in vertically partitioned data [C] // Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Disco very and Data Mining. 2002 : 639- 644.
  • 2Lindell Y,Pinkas B. Privacy preserving data mining [J]. Journa of Cryptology,2002,15(3) : 177 206.
  • 3Agrawal R, Srikant R. Privacy-preserving data mining[C]//Pro eeedings of the SIGMOD Conference on Management of Data. ACM Press, 2000 : 439-450.
  • 4Lindell Y, Pinkas B. Secure Multiparty Computation for Privacy preserving Data Mining [J]. Journal of Privacy and Confidentia lity,2009,1(1) :59- 98.
  • 5Clifton C, Kantarcioglu M, Vaidya J, et al. Tools for Privacy Preserving Distributed Data Mining [J]. ACM SIGKDD Explo rations, 2002,4 (2): 28-34.
  • 6Kleinberg J, Papadimitriou C, Raghavan P. A microeconomic view of data mining [J]. Data Mining and Knowledge Discovery, 1998,2(4) :311-324.
  • 7Abraham I, Dolev D, Gonen R, et at Distributed computing meets game theory:Robust mechanisms for rationai secret sharing and multiparty computation[C]//Proceedings of the Twen ty-fifth Annual ACM Symposium on Principles of Distributed Computing. New York, USA: ACM Press, 2006:53-62.
  • 8Kargupta H, Das K, Liu K, Multi party, privacypreserving dis tributed data mining using a game theoretic framework [ J ]. PK DD, 2007,4702 : 523-531.
  • 9Kantarcioglu M, Jiang Wei. Incentive Compatible Privacy pre serving Data Analysis[R]. UTDCS-29-08. UT Dallas Computer Science Department, 2008.
  • 10张国荣,印鉴.基于博弈论的安全多方求和方法[J].计算机应用研究,2009,26(4):1497-1499. 被引量:7

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部