摘要
采用升流式厌氧污泥床(UASB)处理低营养盐高盐度稠油废水,采用BP神经网络建立UASB反应器处理高含盐油田废水的数学模型,以三维谱图为基础,直观表征各主要影响因子对系统运行效果的影响过程,得到反应器运行调控优化对策。结果表明:在m(COD)∶m(TN)∶m(TP)为1200∶10∶1(其中COD为化学需氧量,TN为总氮,TP为总磷)、含盐量为1.50%、进水COD负荷为0.80 kg/(m3.d)的条件下,COD去除率能够达到70%,原油平均去除率达到70%;UASB反应器能够在低营养条件下高效处理高含盐油田废水;以分离权法为依据,得出水力停留时间(tHRT)为限制因子,各影响因素相对重要性依次为tHRT、进水盐度、进水COD、进水pH值。
An up-flow anaerobic sludge blanket (UASB) reactor was applied to treat the low nutrient and high salinity wastewater from heavy oil production process. A model was developed for the UASB reactor using the back propagation neural network (BPNN) theory. The impacts of various process parameters on UASB reactor performance were described based on three-dimensional graphs and the reactor operation control strategies were gained. The results indicate that under the COD : TN :TP ratio of 1200:10:1, high salt concentration of 1.50% and influem COD loading rate of O. 80 kg/( m^3 . d) condition, the COD removal could reach 70% and average oil removal rate was 70%. UASB could be used to treat low nutrient and high salinity heavy oil-produced wastewater efficiently. Based on the partitioning connection weights, the tsRT is the key factor and the comparative influences on the performance are: tHRT〉Salinity〉 COD〉pH.
出处
《中国石油大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2012年第5期160-163,共4页
Journal of China University of Petroleum(Edition of Natural Science)
基金
中石油科学研究与技术开发项目(2008D-4704-2)
关键词
油田废水
升流式厌氧污泥床
高含盐废水
BP神经网络
oilfield wastewater
up-flow anaerobic sludge blanket
high salinity wastewater
back propagation neural net-work