摘要
为解决运动目标缓慢运动或暂时停止以及场景突变问题,受人类获取知识过程启发,提出一种基于混合高斯的双空间自适应背景建模方法,即采用当前混合高斯模型空间和记忆空间(用于存储曾经的背景模型)对场景进行自适应建模。两个空间模型更新采用不同的学习率:在当前混合高斯模型空间,学习率根据高斯分布对场景的贡献程度进行自适应更新,以解决运动目标缓慢运动或暂时停止问题;记忆空间存储曾经的背景模型,以提高算法对背景突变的适应性,故采用固定学习率进行更新。试验结果表明了所提方法的优越性。
In order to tackle problems that the moving object slows down or stops for a while, and the background changes suddenly when segregating the foreground from background ;" inspired by the human learning process, a double-subspace a- daptive background modeling method based on Gaussian mixture model( GMM ) was proposed. A memory space is introduced into the traditional GMM-based background modeling for storing the past background models. The learning rates for updating the distributions in the two spaces are different. In GMM space, the learning rate is updated with the contribution of the dis- tribution to the scene, which aims to handle problems that the object moves slowly or stops temporarily. While in the memory space, a fixed learning rate is used in order to improve the adaptability to sudden background changes. The experimental re- sults demonstrate the superiority of the proposed method.
出处
《中国石油大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2012年第5期175-178,183,共5页
Journal of China University of Petroleum(Edition of Natural Science)
基金
国家自然科学基金项目(60873163
61271407)
中央高校基本科研业务费专项资金资助项目(27R1105019A)
关键词
背景建模
混合高斯模型
运动目标分割
背景减除
背景突变
background modeling
Gaussian mixture model (GMM)
moving object segmentation
background subtraction
sudden background changes