期刊文献+

一种基于混合高斯的双空间自适应背景建模方法 被引量:4

A double-subspace adaptive background modeling method based on Gaussian mixture model
下载PDF
导出
摘要 为解决运动目标缓慢运动或暂时停止以及场景突变问题,受人类获取知识过程启发,提出一种基于混合高斯的双空间自适应背景建模方法,即采用当前混合高斯模型空间和记忆空间(用于存储曾经的背景模型)对场景进行自适应建模。两个空间模型更新采用不同的学习率:在当前混合高斯模型空间,学习率根据高斯分布对场景的贡献程度进行自适应更新,以解决运动目标缓慢运动或暂时停止问题;记忆空间存储曾经的背景模型,以提高算法对背景突变的适应性,故采用固定学习率进行更新。试验结果表明了所提方法的优越性。 In order to tackle problems that the moving object slows down or stops for a while, and the background changes suddenly when segregating the foreground from background ;" inspired by the human learning process, a double-subspace a- daptive background modeling method based on Gaussian mixture model( GMM ) was proposed. A memory space is introduced into the traditional GMM-based background modeling for storing the past background models. The learning rates for updating the distributions in the two spaces are different. In GMM space, the learning rate is updated with the contribution of the dis- tribution to the scene, which aims to handle problems that the object moves slowly or stops temporarily. While in the memory space, a fixed learning rate is used in order to improve the adaptability to sudden background changes. The experimental re- sults demonstrate the superiority of the proposed method.
出处 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第5期175-178,183,共5页 Journal of China University of Petroleum(Edition of Natural Science)
基金 国家自然科学基金项目(60873163 61271407) 中央高校基本科研业务费专项资金资助项目(27R1105019A)
关键词 背景建模 混合高斯模型 运动目标分割 背景减除 背景突变 background modeling Gaussian mixture model (GMM) moving object segmentation background subtraction sudden background changes
  • 相关文献

参考文献12

  • 1万缨,韩毅,卢汉清.运动目标检测算法的探讨[J].计算机仿真,2006,23(10):221-226. 被引量:121
  • 2YILMAZ A, JAVED O. Object tracking: a survey[ J]. ACM Computing Surveys, 2006,38(4) : 1-45.
  • 3STAUFFER C, GRIMSON W E L. Adaptive background mixture models for real-time tracking: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Fort Collins, CO, USA [ C ]. Los Alamitos, Calif: IEEE, c2009:246-252.
  • 4STAUFFER C, GRIMSON W E L. Learning patterns of activity using real-time tracking[ J]. IEEE Trans on PA- MI, 2000,22 ( 8 ) :747-757.
  • 5KAEW TraKulPong P, BOWDEN R. An improved adap- tive background mixture model for real-time tracking with shadow detection: proceedings of the 2nd European Workshop on Advanced Video-Based Surveillance Sys- tems, Kingston, UK [ C ]. London: Kluwer Academic Publishers, c2001 : 149-158.
  • 6JAVED O, SHAFIQUE K, SHAH M. A hierarchical ap- proach to robust background subtraction using color and gradient information: Workshop on Motion and Video Computing[ C ]. Washington, DC : IEEE, c2002:22-27.
  • 7SUN Yun Da, YUAN Bao Zong. Hierarchical GMM to handle sharp changes in moving object detection [ J ]. E- lectronics Letters, 2004,40( 13 ) :801-802.
  • 8SUN Yun Da, YUAN Bao Zong, MIAO Zhen Jiang, et al. From GMM to HGMM: an approach in moving object detection [ J ]. Computing and Informatics, 2004,23 (3) : 215 -237.
  • 9ZHANG Wei, FANG Xiang Zhong, YANG Xiao Kang. Moving vehicles segmentation based on Bayesian frame- work for Gaussian motion model [ J ]. Pattern Recogni- tion Letters ,2006,27 ( 9 ) :956-967.
  • 10El BAF F, BOUWMANS T, VACHON B. Type-2 fuzzy mixture of Gaussians model: application to background modeling: proceedings of the 4th International Symposi- um on Visual Computing[ C ]. Berlin : Springer-Verlag, c2008 : 772 -781.

二级参考文献33

  • 1Alexei A Efros, Alexander C Berg, Greg Mori, Jitendra Malik.Recognizing Action at a Distance [ C ]. International Conference on Computer Vision (ICCV) , 2003.
  • 2C Wen, A Azarbayejani, T Darrell and A Pentland. Pfinder:Real -Time Tracking of the Human Body. [J]. IEEE Trans.Pattern Analysis and Machine Intelligence, 1997, 19(7).
  • 3W E L Grimson, C Stauffer, R Romano and L Lee. Using Adaptive Tracking to Classify and Monitor Activities in a Site[C]. Proc. IEEE conf. Computer Vision and Pattern Recognition(CVPR) , 1998.
  • 4Robert T Collins, Alan J Lipton, Takeo Kanade. Special Section on Video Surveillance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, August 2000, 22(8) : 745- 746.
  • 5Paul Viola, Michael J Jones, Daniel Snow. Detecting Pedestrians Using Patterns of Motion and Appearance [C].International Conference on Computer Vision (ICCV) , 2003.
  • 6Eric Hayman, Jan - Olof Eklundh. Statistical Background Subtraction for a Mobile Observer[ C ]. International Conference on Computer Vision (ICCV), 2003.
  • 7J Rymal, J Renno, D Greenhill, J Orwell, G A Jones.Adaptive Eigen - backgrounds for Detection[C]. The IEEE International Conference on Image Processing (ICIP) ,200d.
  • 8P Spagnolo, M Leo, T D' Orazio, A Distante. Robust Moving Objects Segmentation by Background Subtraction[C]. The International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS) ,2004.
  • 9Ismail Haritaoglu, David Harwood, Larry S Davis. W4: Real -Time Surveillance of People and Their Activities[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000, 22(8) :809 - 830.
  • 10Ahmed Elgammal, David Harwood, Larry Davis. Non -parametric Model for Background Subtraction [ C]. European Conference on Computer Vision (ECCV) ,2000.

共引文献133

同被引文献39

  • 1范振涛,陈晓竹,陈亮.基于码本算法中亮度范围的改进策略[J].中国计量学院学报,2013,24(3):266-271. 被引量:1
  • 2万缨,韩毅,卢汉清.运动目标检测算法的探讨[J].计算机仿真,2006,23(10):221-226. 被引量:121
  • 3王传旭,张祥光,原春锋,刘云.基于邻域相关性和帧间连续性的前景目标分割[J].数据采集与处理,2007,22(3):288-291. 被引量:5
  • 4张淑军,班晓娟,陈勇,陈戈.基于记忆的人工鱼认知模型[J].计算机工程,2007,33(19):33-35. 被引量:9
  • 5知远.蓝山.美国研究用手势指挥无人机七成多手势已能识别[DB/OL].(2012-03-28)[2012-12-20].http://www.china.corn.cn/military/txt/2012-03/28/content--25007237.htm.
  • 6Heikkila M, Pietikainen M. A texture - based method for model- ing the background and detecting moving objects [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4) :657 -662.
  • 7Shengping Zhang, Hongxun Yao, Shanhui Liu. Dynamic Back- ground Modeling and Subtraction Using Spatio - temporal Local Binary Patterns [ C ]// IEEE International Conference on Image Processing. San Diego, CA: Curran Associates Incorporated,2008:1556 - 1559.
  • 8Yang H, Tan Y, Tian J, et al. Accurate Dynamic Scene Model for Moving Object Detection [ C ]// International Confe~nce on Image Processing (ICIP). San Antonio, TX: Institute of Electri- cal and Electronics Engineers, 2007:157 -160.
  • 9Tang P, Gao L, Liu Z. Salienl Moving Object Detection Using Stochastic Approach Filtering[ C ]//Fourth International Confer- ence on Image and Graphics (ICIG). Chengdu, China: IEEE Computer Society, 2007:530 - 535.
  • 10Hasan B A S, Gan Q J. Sequential EM for Unsupervised Adap- tive Gaussian Mixture Model Based Classifier[ C ]//6th Interna- tional Conferenee Machine Learning and Data Mining in Pattern Recognition. Leipzig, Gernmny: Springer Berlin Heidelberg, 2009 : 96 - 106.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部