期刊文献+

基于客户心理挖掘和预测的推荐系统 被引量:3

Novel recommender system based on client psychology mining and predicating
下载PDF
导出
摘要 基于购物活动表层挖掘的推荐系统的时效性和信息持续性较差。为解决相关问题,提出了基于客户心理挖掘和预测的推荐系统,给出了该系统的解决方案、结构模型以及处理流程。该系统采用多维向量空间存储心理特征数据,并使用贝叶斯算法对客户与商品进行聚类;采用基于功率谱估计的心理特征预测算法生成推荐商品选择。实验结果表明,该系统具有较好的信息持续性,并能够较准确的进行推荐活动。 Due to traditional shopping record mining, the recommender systems bearded bad real-time and information persistent. In order to deal with these problems, a novel system is presented based on client psychology mining and predicting. And its' system schemes, structure models and processing flows are given as following. Then it utilized the multi-dimension vector space to store psychology character data and the Bayesian algorithm to cluster clients and commodities. Topic power spectrum estimation detection method is used to predict clients' current emotion and generate recommended commodity lists. Simulation resuits show that the system has better information persistent and accurate recommendation than the traditional does.
作者 王征 谭龙江
出处 《计算机工程与设计》 CSCD 北大核心 2012年第11期4347-4351,共5页 Computer Engineering and Design
基金 教育部人文社会科学研究基金项目(10YJCZH169) 四川省金融智能与金融工程重点实验室基金项目(FIFE2010-P05) 西南财经大学校管课题基金项目(2010XG068) 华侨大学科研基金项目(07HSK02)
关键词 推荐系统 客户心理 挖掘 预测 特征 recommender system client psychology mining predict character
  • 相关文献

参考文献10

  • 1吴月萍,郑建国.协同过滤推荐算法[J].计算机工程与设计,2011,32(9):3019-3021. 被引量:24
  • 2刘敏娴,马强.基于混合型的Web实时推荐模型研究[J].计算机工程与设计,2011,32(10):3518-3521. 被引量:3
  • 3董祥和,张春光.推荐系统中推荐池的聚类算法分析[J].计算机工程与设计,2011,32(12):4104-4106. 被引量:2
  • 4张珠玉,刘培玉,朱振方,迟学芝.改进的访问统计方法及对用户兴趣度的计算[J].计算机工程与设计,2011,32(2):424-426. 被引量:9
  • 5纪淑娴,赵波.潜在网络购物者与有经验者购买意愿比较研究[J].计算机应用研究,2010,27(9):3358-3363. 被引量:8
  • 6Ohbyung Kwon. Psychological model based attitude prediction for context-aware services [J]. Expert Systems with Applications, 2010, 37 (3): 2477-2485.
  • 7Porcel C, Tejeda-Lorente A, Martinez M A. A hybrid recommender system for the selective dissemination of research resources in a technology transfer office [J]. Information science, 2011, 184 (1): 87-101.
  • 8Pinho Lueas Joel, Segrera Saddys, Moreno Maria N. Making use of associative classifiers in order to alleviate typical draw-backs in recommender systems [J]. Expert Systems with Applications, 2011, 39 (1): 1273-1283.
  • 9Hostler R Eric, Yoon Victoria Y, Guo Zhiling. Assessing the impact of recommender agents on on-line consumer unplanned purchase behavior [J]. Information & Management, 2011, 48 (8): 336-343.
  • 10Bobadilla Jesus, Ortega Fernando, Hernando Ant. Improving collaborative filtering recommender system results and performance using genetic algorithms [J]. Knowledge-Based Systems, 2011, 24 (8): 1310-1316.

二级参考文献73

共引文献41

同被引文献22

  • 1何波,陈媛,王华秋,董世都.基于智能体的电子商务协作推荐系统[J].计算机工程,2007,33(9):216-218. 被引量:3
  • 2PARK S, PENNOCK D.Applying collaborative filtering techniques to movie search for better anking and browsing[C]//Proceedings of the 13th Association for Computing Machinery Special Interest Group on Knowledge Discovery in Data.San Jose, California, USA, 2007: 550-559.
  • 3学习分析技术与知识国际会议.学习分析和知识[EB/OL]. [2012-05-02]. http://lakl2. sites, olt. ubc. ca/.LAKE2012. Learning Analytics and Knowledge [EB/OL]. [2012-05-02]. http://lakl2. sites, olt. ubc. ca/.
  • 4新媒体联盟.2011-地平线-报告-K12[DB/0L].
  • 5新媒体联盟.2015-地平线-报告-K12[DB/OL].
  • 6Veronica Rivera-Pelayo, Valentin Zacharias, Lars Muller, et al. Applying Quantified Self Approaches toSupport Reflective Learning[OL]. LAK,2012.
  • 7Annika Wolff, Zdenek Zdrahal, Andriy Nikolov, et al.Improving retention: predicting at-risk students by analysingclicking behaviour in a virtual learning environment[C]//LAK,2013.
  • 8Richard Joseph Waddington, Sungjin Nam. PracticeExams Make Perfect: Incorporating Course ResourceUse into an Early Warning System [C]//LAK ,2014.
  • 9莫景祺.教师如何实施课堂教学评价[J].课程.教材.教法,2008,28(11):14-18. 被引量:17
  • 10李杰,徐勇,王云峰,朱昭贤.面向个性化推荐的强关联规则挖掘[J].系统工程理论与实践,2009,29(8):144-152. 被引量:45

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部