期刊文献+

一种非静压的平面二维水动力学模型 被引量:4

Plane two-dimensional hydrodynamic model with non-hydrostatic pressure
原文传递
导出
摘要 将N-S方程中的压力分解为静压和动压并将水平动量方程沿水深积分,垂向动量方程则只考虑动压梯度项.求解过程分解为静压步和非静压步,采用有限差分法离散水平动量方程,基于Keller-box格式离散垂向动量方程,得到关于动压的泊松方程并采用稳定双共轭梯度法求解,最后根据动压更新流速和水位,建立了一种非静压的平面二维水动力学模型.利用孤波和规则波的算例验证了模型的有效性. To improve the hydrodynamic model, the pressure terms in the Navier-Stokes (N-S) equa- tions were separated into hydrostatic and dynamic components. The horizontal momentum equations were integrated from bottom to free surface. The vertical momentum equation only retained the dy- namic pressure gradient term. The solution process was divided into hydrostatic and non-hydrostatic step. The horizontal equations were discretized with finite difference method and the vertical one was approximated using the Keller-box scheme. The Poisson-type equations of dynamic pressure were solved by Bi-CGSTAB method. Using the calculated dynamic pressure, the velocity and water surface elevation were updated finally. The solitary wave and regular waves were used to validate the model. And the results show their good agreements.
作者 郭晓明 康玲
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第10期39-43,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 高等学校博士学科点专项科研基金资助项目(20110142110064) 水利部公益性行业专项基金资助项目(201001080)
关键词 水动力学 二维 数学模型 非静压 平面 孤波 hydrodynamics two-dimensional mathematical models non-hydrostatic plane solitarywave
  • 相关文献

参考文献13

  • 1Ling KANG Xiao-ming GUO.Hydrodynamic effects of reconnecting lake group with Yangtze River in China[J].Water Science and Engineering,2011,4(4):405-420. 被引量:6
  • 2康玲,郭晓明,王学立.大型城市湖泊群引水调度模式研究[J].水力发电学报,2012,31(3):65-69. 被引量:12
  • 3Oliger J, Sundstrom A. Theoretical and practical aspects of some initial boundary value problems in fluid dynamics[J]. SIAM Journal of Applied Mathematics, 1978, 35: 419-446.
  • 4Mahadevan A, Oliger J, Street R. A non-hydrostatic mesoscale ocean model, part I : well posedness and scaling[J]. Journal of Physical Oceanography, 1996, 26: 1868-1880.
  • 5吴修广,沈永明,王敏,郑永红,杨志峰.非静压假定的σ坐标下垂向二维浅水模型的应用研究[J].水力发电学报,2005,24(1):93-97. 被引量:4
  • 6Yamazaki Y, Kowalik Z, Cheung K F. Depth-integrated, non-hydrostatic model for wave breaking and run-up[J]. International Journal for Numerical Methods in Fluids 2009, 61(5): 473-497.
  • 7Stelling G S, Zijlema M. An accurate and efficient finite-difference algorithm for non-hydrostatic freeurface flow with application to wave propagation[J]. International Journal for Numerical Methods in Fluids, 2003, 43: 1-23.
  • 8Orlanski I. Simple boundary-condition for unbounded hyperbolic flows[J]. Journal of Computational Phys- ics, 1976, 21(3): 251-269.
  • 9Marcel Zijlema, Stelling G S. Further experiences with computing non-hydrostatic free-surface flows in- volving water waves[J]. International Journal for Numerical Methods in Fluids, 2005, 48 (2): 169- 197.
  • 10van der Vorst H A. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1992, 13(2), 631-644.

二级参考文献42

  • 1李一平,逄勇,吕俊,张刚,丁玲,彭进平,王超,范丽丽.水动力条件下底泥中氮磷释放通量[J].湖泊科学,2004,16(4):318-324. 被引量:64
  • 2GAO Qun,LIU Ying-tao,MAO Han-ying.Environmental influence of Wuhan urban agglomeration development and strategies of environmental protection[J].Journal of Environmental Sciences,2006,18(3):616-623. 被引量:3
  • 3卢金友,黄悦,宫平.三峡工程运用后长江中下游冲淤变化[J].人民长江,2006,37(9):55-57. 被引量:44
  • 4Drago M, Iovenitti L. a-coordinates hydrodynamic numerical for coastal and ocean three-dimensional circulation [ J].Ocean Engineering, 2000,27 : 1065 - 1085.
  • 5Li Z, Johns B. A numerical method for the determination of weakly non-hydrostatic non-linear bee surface wave propagation [ J]. International Journal of Numerical Method for Fluids,2001,35 : 299 - 317.
  • 6Lin P Z, Li C W. A a-coordinate three-dimensional numerical model for surface wave propagation [J]. International of Numerical Method for Fluids, 2002,38 : 1045 - 1068.
  • 7Stansby P K. Semi-implicit finite volume shallow water flow and solute transport solver with κ -ε turbulence model[ J ]. International Journal of numerical Method for Fluids, 1997,25 : 285 - 313.
  • 8Zhou J G,Stansby P K. An arbitrary Lagrangian-Eulerian or(ALES) model with non-hydrostatic pressure for shallow water flow [J]. Computational Methods of Application Mechanics Engineering. 1999,178 : 199 - 214.
  • 9Rodi W. Turbulence models and their applications in hydraulics [ R]. 3^nd Edn. IAHR, Delft, The Netherlands, 1993.
  • 10Patankar S V, Spalding D B. Calculation Procedure for Heat, Mass and Momentum Transfer in 3-D Flows [J].International Journal of Heat and Mass Transfer, 1972,15 : 1787 - 1806.

共引文献16

同被引文献46

  • 1胡德超,张红武,钟德钰.C-D无结构网格上的三维自由水面非静水压力流动模型Ⅰ:算法[J].水利学报,2009,39(8):948-955. 被引量:11
  • 2HIEU P D, KATSUTOSI-II T, CA V T. Numerical simulation of breaking waves using a two-phase flow model[ J]. Applied Mathe- matical Modelling, 2004, 28(11): 983-1005.
  • 3KIRBY J T. Boussinesq models and application to nearshore wave propagation, surfzone processes and wave-induced currents[ M ]// LAKHAN V C. Advances in Coastal Modeling. New York: Elsevier, 2003: 1-41.
  • 4SHI F Y, KIRBY J T, HARRIS J C, et al. A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation [ J ]. Ocean Modelling, 2012, 43/44 : 36-51.
  • 5AI C F, JIN S. A multi-layer non-hydrostatic model for wave breaking and run-up[ J]. Coastal Engineering,2012,62: 1-8.
  • 6ZIJLEMA M, STELLING G, SMIT P. SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters[J]. Coastal Engineering,2011, 58(10) : 992-1012.
  • 7WU C, YOUNG C C, CHEN Q, et al. Efficient Nonhdrostatic modelling of surface waves from deep to shallow water[ J ]. Journal of Waterway, Port, Coastal and Ocean Engineering, 2010, 36(2) : 104-118.
  • 8CHOI D Y, YUAN H. A horizontally curvilinear non-hydrostatic model for simulating nonlinear wave motion in curved boundaries [ J]. International Journal for Numerical Methods in Fluids, 2012, 69(12) : 1923-1938.
  • 9YAMAZAKI Y, KOWALIK Z, CHEUNG K F. Depth-integrated, non-hydrostatic model for wave breaking and run-up[ J]. Interna- tional Journal for Numerical Methods in Fluids, 2009, 61(5) : 473-497.
  • 10BRADFORD S. Godunov-based model for Nonhydrostatic wave dynamics[ Jl. Journal of Waterway, Port, Coastal, and Ocean Engi- neering, 2005, 131(5) :226-238.

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部