期刊文献+

基于岭回归和人工神经网络估测森林可燃物负荷量 被引量:6

Estimation of Forest Fuel Load Based with Ridge Regression and Artificial Neural Networks
下载PDF
导出
摘要 选取东北林业大学帽儿山实验林场为研究区域,以少量野外定位调查数据及与其对应的遥感和GIS信息为基础,利用岭回归和人工神经网络分析方法,对森林可燃物负荷量估测模型及其影响因子进行系统研究。结果表明:对于TM3、TM(4×3)/7、TM4/3、海拔等10个影响可燃物负荷量估测的主要因子,利用岭回归方法可以克服变量间由于存在复共线性关系对求解待定参数所造成的不利影响。建立以像元为单位的岭回归和岭回归与神经网络组合估测模型,模型平均绝对百分比误差分别为17.6%和11.7%,2种方法可用于实现特定林场尺度森林可燃物负荷量的定量估测,其中组合模型效果较好。 Based on data of a field positioning survey and the corresponding remote sensing and GIS, the forest fuel load and the influence factors were researched by using ridge trace analysis and artificial neural networks in Maoershan experimental forest station of Northeast Forestry University. Ridge regression method can overcome the negative impact imposed the undetermined parameters there exist in the multicollinearity relationship solution between variables which include ten main influence factors, i.e., TM3, TM(4×3) /7, TM4/3 and altitude. A model was established for estimating forest fuel load with the unit of pixel, and Ridge Regression and Artificial Neural Networks MAPE. The deviation of estimation by the two models was 17.6% and 11.7%. The result indicated that the quantitative estimation of forest fuel load for regional forests could be achieved.
作者 王强 胡海清
出处 《林业科学》 EI CAS CSCD 北大核心 2012年第9期108-114,共7页 Scientia Silvae Sinicae
基金 “十二五”农村领域国家科技计划课题(2011BAD37B0104) 林业公益性行业科研专项经费(201004003-6) 林业公益性行业科研专项经费(200804002-3) 黑龙江省科技计划(GA09B201-06)
关键词 可燃物负荷量 遥感 岭回归分析 GIS 人工神经网络 fuel load remote sensing GIS ridge trace analysis artificial neural network
  • 相关文献

参考文献15

  • 1王强,金森.利用RS和林分因子估测帽儿山林场森林可燃物负荷量[J].东北林业大学学报,2008,36(9):35-37. 被引量:5
  • 2胡海清.利用林分特征因子预测森林地被可燃物载量的研究[J].林业科学,2005,41(5):96-100. 被引量:49
  • 3Keane R E, Mincemoyer S A, Schmidt K M, et al. 2000. Mappingvegetation and fules for fire management on the Gila National ForestComplex, NewMexico. USD A Forest Service, HMRS-GTR - 46 ,127.
  • 4Keane R E,Long D G , Schmidt K M , al. 1998b. Mapping fuels forspatial fire simulations using remote sensing and biophysicalmodeling. Proceedings of the Seventh Forest Service Remote SensingApplications Conference. Nassau Bay, Texas, 6-10 April 1998,301 -316.
  • 5Keane R E, Brugan R,Van Wagtendonk J. 2001. Mapping wildlandfuels for fire management across multiple scales : integrating remotesensing, GIS, and biophysical modeling. International Journal ofWildland Fire, 10: 301 -319.
  • 6Scott K, Oswald B, Farrish K, et al. 2002. Fuel lodading predictionmodels developed from aerial photographs of the Sangre de Cristo andJemes mountains of NewMexico, USA. International Journal ofWildland Fire, 11(1) : 85 -90.
  • 7金森.遥感估测森林可燃物载量的研究进展[J].林业科学,2006,42(12):63-67. 被引量:18
  • 8Brandis K, Jacobson C. 2003. Estimation of vegetative fuel load usinglandsat TM imagery in new South-Wales, Australia. InternationalJournal of Wildland Fire, 12(2) : 185 - 194.
  • 9胡海清,王强.利用林分因子估测森林地表可燃物负荷量[J].东北林业大学学报,2005,33(6):17-18. 被引量:14
  • 10Oswald B P, Fancher J T, Kulhavy D L, et al. 1999. Classifying fuleswith aerial photography in east Texas. International Journal ofWildland Fire, 9(2) : 109 -113.

二级参考文献75

共引文献90

同被引文献73

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部